Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
# Define benchmark data | |
benchmark_data = { | |
'Model': [ | |
'IlyaGusev/saiga_llama3_8b', # LLaMA3 | |
'Vikhrmodels/Vikhr-Nemo-12B', # Vikhr | |
'TinyLLaMA/TinyLlama-1.1B', # TinyLLaMA | |
'mistralai/Mistral-Nemo-Instruct-2407', # Mistral | |
'Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct' # Qwen | |
], | |
'Creativity Score': [ | |
37.75, # LLaMA3 | |
46.00, # Vikhr | |
6.50, # TinyLLaMA | |
23.75, # Mistral | |
8.25 # Qwen | |
], | |
'Diversity Score': [ | |
49.50, # LLaMA3 | |
52.00, # Vikhr | |
14.50, # TinyLLaMA | |
38.50, # Mistral | |
15.55 # Qwen | |
], | |
'Relevance Score': [ | |
79.25, # LLaMA3 | |
87.50, # Vikhr | |
18.50, # TinyLLaMA | |
76.75, # Mistral | |
34.25 # Qwen | |
], | |
'Average Score': [ | |
55.50, # LLaMA3 | |
61.83, # Vikhr | |
13.17, # TinyLLaMA | |
46.33, # Mistral | |
19.35 # Qwen | |
] | |
} | |
def display_results(): | |
df = pd.DataFrame(benchmark_data) | |
return df | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Russian Language Model Benchmark Results") | |
# Add dataframe output | |
output = gr.DataFrame( | |
headers=list(benchmark_data.keys()), | |
interactive=False | |
) | |
refresh_btn = gr.Button("Show Results") | |
refresh_btn.click(fn=display_results, outputs=output) | |
if __name__ == "__main__": | |
demo.launch() |