Spaces:
Sleeping
Sleeping
# impoprt packages | |
import torch | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, pipeline | |
import sentencepiece | |
import gradio as gr | |
# Image captioning model | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
# Translate en to ar | |
model_translater = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ar") | |
# conditional image captioning (with prefix-) | |
def image_captioning(image_url, prefix="a "): | |
""" Return text (As str) to describe an image """ | |
# Get the image by image_url and convert it to RGB | |
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') | |
# Process the image | |
inputs = processor(raw_image, prefix, return_tensors="pt") | |
# Generate text to describe the image | |
output = model.generate(**inputs) | |
# Decode the output | |
output = processor.decode(output[0], skip_special_tokens=True, max_length=80) | |
return output | |
def translate_text(text, to="ar"): | |
""" Return translated text """ | |
translated_text = model_translater(str(text)) | |
return translated_text[0]['translation_text'] | |
def image_captioning_ar(image_url, prefix = "a "): | |
if image_url: | |
text = image_captioning(image_url, prefix=prefix) | |
return translate_text(text) | |
return null | |
imageCaptioning_interface = gr.Interface( | |
fn = image_captioning_ar, | |
inputs=gr.inputs.Textbox(lines = 7, label = 'Image url'), | |
outputs=gr.outputs.Textbox(label="Caption"), | |
title = 'Image captioning', | |
) | |
imageCaptioning_interface.launch() |