testGardenModel / app.py
Mattral's picture
Update app.py
26a9c66 verified
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from dotenv import load_dotenv
from functools import lru_cache
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# App title and description
st.title("I am Your GrowBuddy 🌱")
st.write("Let me help you start gardening. Let's grow together!")
# Function to load model only once (with quantization for CPU optimization)
@st.cache_resource
def load_model():
try:
tokenizer = AutoTokenizer.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN, use_fast=True)
# Quantized model for better CPU performance (with 8-bit precision)
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", use_auth_token=HF_TOKEN, torch_dtype=torch.float32)
return tokenizer, model
except Exception as e:
st.error(f"Failed to load model: {e}")
return None, None
# Load model and tokenizer (cached)
tokenizer, model = load_model()
if not tokenizer or not model:
st.stop()
# Ensure model is on CPU (set to float32 for better performance on CPU)
device = torch.device("cpu")
model = model.to(device)
# Initialize session state messages
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
]
# Display conversation history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# LRU Cache for repeated queries to avoid redundant computation
@lru_cache(maxsize=100)
def cached_generate_response(prompt, tokenizer, model):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
outputs = model.generate(inputs["input_ids"], max_new_tokens=50, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Function to generate response with optimization
def generate_response(prompt):
try:
# Check cache for previous result (for repeated queries)
cached_response = cached_generate_response(prompt, tokenizer, model)
return cached_response
except Exception as e:
st.error(f"Error during text generation: {e}")
return "Sorry, I couldn't process your request."
# User input field for gardening questions
user_input = st.chat_input("Type your gardening question here:")
if user_input:
with st.chat_message("user"):
st.write(user_input)
with st.chat_message("assistant"):
with st.spinner("Generating your answer..."):
response = generate_response(user_input)
st.write(response)
# Update session state with new messages
st.session_state.messages.append({"role": "user", "content": user_input})
st.session_state.messages.append({"role": "assistant", "content": response})