Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,64 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import random
|
4 |
-
import textwrap
|
5 |
-
from transformers import pipeline
|
6 |
-
import numpy as np
|
7 |
|
8 |
-
#
|
9 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
10 |
-
|
11 |
-
# Define the model to be used
|
12 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
13 |
client = InferenceClient(model)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Convert to mono if stereo
|
29 |
-
if y.ndim > 1:
|
30 |
-
y = y.mean(axis=1)
|
31 |
-
|
32 |
-
y = y.astype(np.float32)
|
33 |
-
y /= np.max(np.abs(y)) # Normalize audio
|
34 |
-
|
35 |
-
return transcriber({"sampling_rate": sr, "raw": y})["text"] # Transcribe audio
|
36 |
-
|
37 |
-
def format_prompt_mixtral(message, history):
|
38 |
-
prompt = "<s>"
|
39 |
-
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
|
40 |
-
|
41 |
-
if history:
|
42 |
-
for user_prompt, bot_response in history:
|
43 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
44 |
-
prompt += f" {bot_response}</s> "
|
45 |
-
prompt += f"[INST] {message} [/INST]"
|
46 |
-
return prompt
|
47 |
-
|
48 |
-
def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
|
49 |
-
generate_kwargs = dict(
|
50 |
-
temperature=temp,
|
51 |
-
max_new_tokens=tokens,
|
52 |
-
top_p=top_p,
|
53 |
-
repetition_penalty=rep_p,
|
54 |
-
do_sample=True,
|
55 |
-
seed=seed,
|
56 |
-
)
|
57 |
-
|
58 |
-
formatted_prompt = format_prompt_mixtral(prompt, history)
|
59 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
60 |
output = ""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
def
|
73 |
-
|
74 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
75 |
-
else:
|
76 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
77 |
|
|
|
78 |
with gr.Blocks() as app:
|
79 |
-
gr.HTML("
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
|
100 |
-
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
101 |
-
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
102 |
-
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
103 |
-
|
104 |
-
def handle_chat(audio_input, chat_history, seed, temp, tokens, top_p, rep_p):
|
105 |
-
user_message = transcribe(audio_input) # Transcribe audio to text
|
106 |
-
if user_message is None or user_message == "": # Check for empty or error in recognition
|
107 |
-
return chat_history, "Sorry, I couldn't understand that."
|
108 |
-
|
109 |
-
response_gen = chat_inf(user_message, chat_history, seed, temp, tokens, top_p, rep_p)
|
110 |
-
response = next(response_gen)[0][-1][1] # Get the response text
|
111 |
-
return chat_history + [(user_message, response)], response # Return updated chat history
|
112 |
-
|
113 |
-
go = btn.click(handle_chat, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)
|
114 |
|
115 |
-
|
116 |
-
clear_btn.click(clear_fn, None, [inp, chat])
|
117 |
|
118 |
-
app.
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import random
|
|
|
|
|
|
|
4 |
|
5 |
+
# Initialize the model
|
|
|
|
|
|
|
6 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
7 |
client = InferenceClient(model)
|
8 |
|
9 |
+
def chat_response(prompt, history, seed, temp, tokens, top_p, rep_p):
|
10 |
+
generate_kwargs = {
|
11 |
+
"temperature": temp,
|
12 |
+
"max_new_tokens": tokens,
|
13 |
+
"top_p": top_p,
|
14 |
+
"repetition_penalty": rep_p,
|
15 |
+
"do_sample": True,
|
16 |
+
"seed": seed,
|
17 |
+
}
|
18 |
+
|
19 |
+
# Include the chat history in the prompt
|
20 |
+
formatted_prompt = "\n".join([f"Q: {user_prompt}\nA: {bot_response}" for user_prompt, bot_response in history]) + f"\nQ: {prompt}\nA:"
|
21 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
output = ""
|
23 |
+
|
24 |
+
# Generating text in streaming mode
|
25 |
+
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True):
|
26 |
+
# Assuming response is directly a string or contains a message
|
27 |
+
output += response # Using response directly since it's a string
|
28 |
|
29 |
+
# Yield the updated output for real-time display
|
30 |
+
yield [(prompt, output)]
|
31 |
|
32 |
+
# Append the full response to history after completion
|
33 |
+
history.append((prompt, output))
|
34 |
+
yield history # Yielding the updated history
|
35 |
|
36 |
+
def clear_chat():
|
37 |
+
return [], [] # Returning an empty history
|
|
|
|
|
|
|
38 |
|
39 |
+
# Gradio interface
|
40 |
with gr.Blocks() as app:
|
41 |
+
gr.HTML("<center><h1>Chatbot</h1><h3>Ask your questions!</h3></center>")
|
42 |
|
43 |
+
chat_box = gr.Chatbot(height=500)
|
44 |
+
inp = gr.Textbox(label="Your Question", lines=5)
|
45 |
+
btn = gr.Button("Ask")
|
46 |
+
clear_btn = gr.Button("Clear")
|
47 |
+
|
48 |
+
rand_seed = gr.Checkbox(label="Random Seed", value=True)
|
49 |
+
seed_slider = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
50 |
+
tokens_slider = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000)
|
51 |
+
temp_slider = gr.Slider(label="Temperature", value=0.9, minimum=0.01, maximum=1.0)
|
52 |
+
top_p_slider = gr.Slider(label="Top-P", value=0.9, minimum=0.01, maximum=1.0)
|
53 |
+
rep_p_slider = gr.Slider(label="Repetition Penalty", value=1.0, minimum=0.1, maximum=2.0)
|
54 |
+
|
55 |
+
# Handle button click to get chat response
|
56 |
+
btn.click(
|
57 |
+
lambda prompt: chat_response(prompt, [], seed_slider.value, temp_slider.value, tokens_slider.value, top_p_slider.value, rep_p_slider.value),
|
58 |
+
inp,
|
59 |
+
chat_box,
|
60 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
clear_btn.click(clear_chat, None, [inp, chat_box])
|
|
|
63 |
|
64 |
+
app.launch(share=True, auth=("admin", "0112358"))
|