Spaces:
Runtime error
Runtime error
import streamlit as st | |
from tensorflow_tts.inference import AutoProcessor, TFAutoModel | |
import tensorflow as tf | |
import numpy as np | |
import soundfile as sf | |
import yaml | |
processor = AutoProcessor.from_pretrained("MarcNg/fastspeech2-vi-infore") | |
fastspeech2 = TFAutoModel.from_pretrained("MarcNg/fastspeech2-vi-infore") | |
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en") | |
output = "output.wav" | |
st.header("MarcNg/fastspeech2-vi-infore Demo") | |
def tts(text): | |
input_ids = processor.text_to_sequence(text) | |
mel_before, mel_after, duration_outputs, _, _ = fastspeech2.inference( | |
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
f0_ratios =tf.convert_to_tensor([1.0], dtype=tf.float32), | |
energy_ratios =tf.convert_to_tensor([1.0], dtype=tf.float32), | |
) | |
return mel_after | |
text = st.text_input("Text to process") | |
if st.button("Speak"): | |
mel_after = tts(text) | |
audio_after = mb_melgan.inference(mel_after)[0, :, 0] | |
sf.write(output, audio_after, 22050, 'PCM_16') | |
st.audio(output, format='audio/wav') | |