import time import gradio as gr from openai import OpenAI def format_time(seconds_float): total_seconds = int(round(seconds_float)) hours = total_seconds // 3600 remaining_seconds = total_seconds % 3600 minutes = remaining_seconds // 60 seconds = remaining_seconds % 60 if hours > 0: return f"{hours}h {minutes}m {seconds}s" elif minutes > 0: return f"{minutes}m {seconds}s" else: return f"{seconds}s" DESCRIPTION = ''' # Duplicate the space for free private inference. ## DeepSeek-R1 Distill Qwen-1.5B Demo A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. ''' CSS = """ .spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } .thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; } .thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; } .thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; } details:not([open]) .thinking-container { border-left-color: #290c15; } details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; } """ client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") def user(message, history): return "", history + [[message, None]] class ParserState: __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time'] def __init__(self): self.answer = "" self.thought = "" self.in_think = False self.start_time = 0 self.last_pos = 0 self.total_think_time = 0.0 def parse_response(text, state): buffer = text[state.last_pos:] state.last_pos = len(text) while buffer: if not state.in_think: think_start = buffer.find('') if think_start != -1: state.answer += buffer[:think_start] state.in_think = True state.start_time = time.perf_counter() buffer = buffer[think_start + 7:] else: state.answer += buffer break else: think_end = buffer.find('') if think_end != -1: state.thought += buffer[:think_end] # Calculate duration and accumulate duration = time.perf_counter() - state.start_time state.total_think_time += duration state.in_think = False buffer = buffer[think_end + 8:] else: state.thought += buffer break elapsed = time.perf_counter() - state.start_time if state.in_think else 0 return state, elapsed def format_response(state, elapsed): answer_part = state.answer.replace('', '').replace('', '') collapsible = [] collapsed = "
" if state.thought or state.in_think: if state.in_think: # Ongoing think: total time = accumulated + current elapsed total_elapsed = state.total_think_time + elapsed formatted_time = format_time(total_elapsed) status = f"🌀 Thinking for {formatted_time}" else: # Finished: show total accumulated time formatted_time = format_time(state.total_think_time) status = f"✅ Thought for {formatted_time}" collapsed = "
" collapsible.append( f"{collapsed}{status}\n\n
\n{state.thought}\n
\n
" ) return collapsible, answer_part def generate_response(history, temperature, top_p, max_tokens, active_gen): messages = [{"role": "user", "content": history[-1][0]}] full_response = "" state = ParserState() last_update = 0 try: stream = client.chat.completions.create( model="", messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_tokens, stream=True ) for chunk in stream: if not active_gen[0]: break if chunk.choices[0].delta.content: full_response += chunk.choices[0].delta.content state, elapsed = parse_response(full_response, state) collapsible, answer_part = format_response(state, elapsed) history[-1][1] = "\n\n".join(collapsible + [answer_part]) yield history # Final update to ensure all content is parsed state, elapsed = parse_response(full_response, state) collapsible, answer_part = format_response(state, elapsed) history[-1][1] = "\n\n".join(collapsible + [answer_part]) yield history except Exception as e: history[-1][1] = f"Error: {str(e)}" yield history finally: active_gen[0] = False with gr.Blocks(css=CSS) as demo: gr.Markdown(DESCRIPTION) active_gen = gr.State([False]) chatbot = gr.Chatbot( elem_id="chatbot", height=500, show_label=False, render_markdown=True ) with gr.Row(): msg = gr.Textbox( label="Message", placeholder="Type your message...", container=False, scale=4 ) submit_btn = gr.Button("Send", variant='primary', scale=1) with gr.Column(scale=2): with gr.Row(): clear_btn = gr.Button("Clear", variant='secondary') stop_btn = gr.Button("Stop", variant='stop') with gr.Accordion("Parameters", open=False): temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") gr.Examples( examples=[ ["How many r's are in the word strawberry?"], ["Write 10 funny sentences that end in a fruit!"], ["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"] ], inputs=msg, label="Example Prompts" ) submit_event = submit_btn.click( user, [msg, chatbot], [msg, chatbot], queue=False ).then( lambda: [True], outputs=active_gen ).then( generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot ) msg.submit( user, [msg, chatbot], [msg, chatbot], queue=False ).then( lambda: [True], outputs=active_gen ).then( generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot ) stop_btn.click( lambda: [False], None, active_gen, cancels=[submit_event] ) clear_btn.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)