import time
import gradio as gr
from openai import OpenAI
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
# Duplicate the space for free private inference.
## DeepSeek-R1 Distill Qwen-1.5B Demo
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
'''
CSS = """
.spinner {
animation: spin 1s linear infinite;
display: inline-block;
margin-right: 8px;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
.thinking-summary {
cursor: pointer;
padding: 8px;
background: #f5f5f5;
border-radius: 4px;
margin: 4px 0;
}
.thought-content {
padding: 10px;
background: #f8f9fa;
border-radius: 4px;
margin: 5px 0;
}
.thinking-container {
border-left: 3px solid #facc15;
padding-left: 10px;
margin: 8px 0;
background: #210c29;
}
details:not([open]) .thinking-container {
border-left-color: #290c15;
}
details {
border: 1px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 12px !important;
margin: 8px 0 !important;
transition: border-color 0.2s;
}
"""
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
def user(message, history):
return "", history + [[message, None]]
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think:
think_start = buffer.find('')
if think_start != -1:
state.answer += buffer[:think_start]
state.in_think = True
state.start_time = time.perf_counter()
buffer = buffer[think_start + 7:]
else:
state.answer += buffer
break
else:
think_end = buffer.find('')
if think_end != -1:
state.thought += buffer[:think_end]
# Calculate duration and accumulate
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[think_end + 8:]
else:
state.thought += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer.replace('', '').replace('', '')
collapsible = []
collapsed = ""
if state.thought or state.in_think:
if state.in_think:
# Ongoing think: total time = accumulated + current elapsed
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"🌀 Thinking for {formatted_time}"
else:
# Finished: show total accumulated time
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = ""
collapsible.append(
f"{collapsed}{status}
\n\n\n{state.thought}\n
\n "
)
return collapsible, answer_part
def generate_response(history, temperature, top_p, max_tokens, active_gen):
messages = [{"role": "user", "content": history[-1][0]}]
full_response = ""
state = ParserState()
last_update = 0
try:
stream = client.chat.completions.create(
model="",
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True
)
for chunk in stream:
if not active_gen[0]:
break
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
# Final update to ensure all content is parsed
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
except Exception as e:
history[-1][1] = f"Error: {str(e)}"
yield history
finally:
active_gen[0] = False
with gr.Blocks(css=CSS) as demo:
gr.Markdown(DESCRIPTION)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your message...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
gr.Examples(
examples=[
["How many r's are in the word strawberry?"],
["Write 10 funny sentences that end in a fruit!"],
["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
],
inputs=msg,
label="Example Prompts"
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)