Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ import networkx as nx
|
|
13 |
from collections import Counter
|
14 |
import json
|
15 |
from datetime import datetime
|
16 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
17 |
-
from transformers.image_utils import load_image
|
18 |
|
19 |
@dataclass
|
20 |
class ChatMessage:
|
@@ -34,9 +32,11 @@ class XylariaChat:
|
|
34 |
model="mistralai/Mistral-Nemo-Instruct-2407",
|
35 |
token=self.hf_token
|
36 |
)
|
|
|
|
|
|
|
37 |
|
38 |
self.image_gen_api_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
39 |
-
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
40 |
|
41 |
self.conversation_history = []
|
42 |
self.persistent_memory = []
|
@@ -97,13 +97,6 @@ class XylariaChat:
|
|
97 |
|
98 |
self.chat_history_file = "chat_history.json"
|
99 |
|
100 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
-
self.vlm_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
102 |
-
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
103 |
-
"HuggingFaceTB/SmolVLM-Instruct",
|
104 |
-
torch_dtype=torch.bfloat16,
|
105 |
-
_attn_implementation="flash_attention_2" if self.device == "cuda" else "eager",
|
106 |
-
).to(self.device)
|
107 |
|
108 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
109 |
for emotion, delta in emotion_deltas.items():
|
@@ -408,44 +401,34 @@ class XylariaChat:
|
|
408 |
print(f"Error resetting API client: {e}")
|
409 |
|
410 |
return None
|
411 |
-
|
412 |
-
def
|
413 |
try:
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
elif isinstance(image, str)
|
418 |
-
image
|
419 |
-
|
420 |
-
|
421 |
else:
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
{"type": "image"},
|
429 |
-
{"type": "text", "text": user_input}
|
430 |
-
]
|
431 |
-
},
|
432 |
-
]
|
433 |
-
|
434 |
-
prompt = self.vlm_processor.apply_chat_template(messages, add_generation_prompt=True)
|
435 |
-
inputs = self.vlm_processor(text=prompt, images=[image], return_tensors="pt")
|
436 |
-
inputs = inputs.to(self.device)
|
437 |
-
|
438 |
-
generated_ids = self.vlm_model.generate(**inputs, max_new_tokens=500)
|
439 |
-
generated_texts = self.vlm_processor.batch_decode(
|
440 |
-
generated_ids,
|
441 |
-
skip_special_tokens=True,
|
442 |
)
|
443 |
-
|
444 |
-
return generated_texts[0].split("Assistant: ")[-1]
|
445 |
|
446 |
-
|
447 |
-
|
|
|
|
|
|
|
448 |
|
|
|
|
|
|
|
449 |
def generate_image(self, prompt):
|
450 |
try:
|
451 |
payload = {"inputs": prompt}
|
@@ -501,11 +484,8 @@ class XylariaChat:
|
|
501 |
messages.append(msg)
|
502 |
|
503 |
if image:
|
504 |
-
image_caption = self.
|
505 |
-
|
506 |
-
role="user",
|
507 |
-
content=image_caption
|
508 |
-
).to_dict())
|
509 |
|
510 |
messages.append(ChatMessage(
|
511 |
role="user",
|
|
|
13 |
from collections import Counter
|
14 |
import json
|
15 |
from datetime import datetime
|
|
|
|
|
16 |
|
17 |
@dataclass
|
18 |
class ChatMessage:
|
|
|
32 |
model="mistralai/Mistral-Nemo-Instruct-2407",
|
33 |
token=self.hf_token
|
34 |
)
|
35 |
+
|
36 |
+
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
37 |
+
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
38 |
|
39 |
self.image_gen_api_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
|
|
40 |
|
41 |
self.conversation_history = []
|
42 |
self.persistent_memory = []
|
|
|
97 |
|
98 |
self.chat_history_file = "chat_history.json"
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
102 |
for emotion, delta in emotion_deltas.items():
|
|
|
401 |
print(f"Error resetting API client: {e}")
|
402 |
|
403 |
return None
|
404 |
+
|
405 |
+
def caption_image(self, image):
|
406 |
try:
|
407 |
+
if isinstance(image, str) and os.path.isfile(image):
|
408 |
+
with open(image, "rb") as f:
|
409 |
+
data = f.read()
|
410 |
+
elif isinstance(image, str):
|
411 |
+
if image.startswith('data:image'):
|
412 |
+
image = image.split(',')[1]
|
413 |
+
data = base64.b64decode(image)
|
414 |
else:
|
415 |
+
data = image.read()
|
416 |
+
|
417 |
+
response = requests.post(
|
418 |
+
self.image_api_url,
|
419 |
+
headers=self.image_api_headers,
|
420 |
+
data=data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
)
|
|
|
|
|
422 |
|
423 |
+
if response.status_code == 200:
|
424 |
+
caption = response.json()[0].get('generated_text', 'No caption generated')
|
425 |
+
return caption
|
426 |
+
else:
|
427 |
+
return f"Error captioning image: {response.status_code} - {response.text}"
|
428 |
|
429 |
+
except Exception as e:
|
430 |
+
return f"Error processing image: {str(e)}"
|
431 |
+
|
432 |
def generate_image(self, prompt):
|
433 |
try:
|
434 |
payload = {"inputs": prompt}
|
|
|
484 |
messages.append(msg)
|
485 |
|
486 |
if image:
|
487 |
+
image_caption = self.caption_image(image)
|
488 |
+
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
|
|
|
|
|
|
|
489 |
|
490 |
messages.append(ChatMessage(
|
491 |
role="user",
|