Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -47,30 +47,55 @@ class XylariaChat:
|
|
47 |
"strategy_adjustment": ""
|
48 |
}
|
49 |
|
|
|
50 |
self.internal_state = {
|
51 |
"emotions": {
|
52 |
-
"valence": 0.5,
|
53 |
-
"arousal": 0.5,
|
54 |
-
"dominance": 0.5,
|
|
|
|
|
|
|
55 |
},
|
56 |
-
"
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
}
|
59 |
|
|
|
60 |
self.goals = [
|
61 |
-
{"goal": "Provide helpful and
|
62 |
-
{"goal": "
|
63 |
-
{"goal": "Maintain a coherent and
|
|
|
|
|
64 |
]
|
65 |
|
66 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
67 |
|
68 |
-
def update_internal_state(self, emotion_deltas,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def update_knowledge_graph(self, entities, relationships):
|
76 |
for entity in entities:
|
@@ -96,25 +121,111 @@ class XylariaChat:
|
|
96 |
}
|
97 |
|
98 |
def calculate_coherence(self):
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def calculate_relevance(self):
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def detect_bias(self):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
def introspect(self):
|
111 |
introspection_report = "Introspection Report:\n"
|
112 |
-
introspection_report += f" Current Emotional State
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
introspection_report += f" Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
|
|
|
115 |
introspection_report += " Current Goals:\n"
|
116 |
for goal in self.goals:
|
117 |
-
introspection_report += f" - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']})\n"
|
118 |
introspection_report += "Metacognitive Layer Report\n"
|
119 |
introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
|
120 |
introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
|
@@ -123,12 +234,17 @@ class XylariaChat:
|
|
123 |
return introspection_report
|
124 |
|
125 |
def adjust_response_based_on_state(self, response):
|
|
|
126 |
if self.internal_state["introspection_level"] > 0.7:
|
127 |
response = self.introspect() + "\n\n" + response
|
128 |
|
129 |
valence = self.internal_state["emotions"]["valence"]
|
130 |
arousal = self.internal_state["emotions"]["arousal"]
|
|
|
|
|
|
|
131 |
|
|
|
132 |
if valence < 0.4:
|
133 |
if arousal > 0.6:
|
134 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
@@ -140,23 +256,60 @@ class XylariaChat:
|
|
140 |
else:
|
141 |
response = "I'm in a good mood and happy to help. " + response
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
return response
|
144 |
-
|
145 |
def update_goals(self, user_feedback):
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
for goal in self.goals:
|
148 |
-
if goal["goal"] == "Provide helpful and
|
149 |
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
for goal in self.goals:
|
152 |
-
if goal["goal"] == "
|
153 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
def store_information(self, key, value):
|
156 |
new_memory = f"{key}: {value}"
|
157 |
self.persistent_memory.append(new_memory)
|
158 |
self.update_memory_embeddings()
|
159 |
-
self.update_internal_state({}, 0.1, 0)
|
160 |
return f"Stored: {key} = {value}"
|
161 |
|
162 |
def retrieve_information(self, query):
|
@@ -175,7 +328,7 @@ class XylariaChat:
|
|
175 |
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
|
176 |
|
177 |
relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
|
178 |
-
self.update_internal_state({}, 0, 0.1)
|
179 |
return "\n".join(relevant_memories)
|
180 |
|
181 |
def update_memory_embeddings(self):
|
@@ -190,14 +343,23 @@ class XylariaChat:
|
|
190 |
"valence": 0.5,
|
191 |
"arousal": 0.5,
|
192 |
"dominance": 0.5,
|
|
|
|
|
|
|
193 |
},
|
194 |
-
"
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
}
|
197 |
self.goals = [
|
198 |
-
{"goal": "Provide helpful and
|
199 |
-
{"goal": "
|
200 |
-
{"goal": "Maintain a coherent and
|
|
|
|
|
201 |
]
|
202 |
|
203 |
self.knowledge_graph = nx.DiGraph()
|
@@ -317,11 +479,24 @@ class XylariaChat:
|
|
317 |
return f"Error generating response: {str(e)}"
|
318 |
|
319 |
def extract_entities(self, text):
|
320 |
-
|
|
|
|
|
|
|
|
|
321 |
|
322 |
def extract_relationships(self, text):
|
323 |
-
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
def messages_to_prompt(self, messages):
|
326 |
prompt = ""
|
327 |
for msg in messages:
|
@@ -379,18 +554,40 @@ class XylariaChat:
|
|
379 |
|
380 |
self.update_goals(message)
|
381 |
|
|
|
|
|
|
|
|
|
|
|
382 |
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
383 |
-
|
|
|
384 |
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
385 |
-
|
|
|
386 |
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
387 |
-
|
|
|
388 |
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
389 |
-
|
|
|
390 |
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
392 |
else:
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
|
396 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
@@ -399,6 +596,7 @@ class XylariaChat:
|
|
399 |
if len(self.conversation_history) > 10:
|
400 |
self.conversation_history = self.conversation_history[-10:]
|
401 |
|
|
|
402 |
custom_css = """
|
403 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
404 |
body, .gradio-container {
|
|
|
47 |
"strategy_adjustment": ""
|
48 |
}
|
49 |
|
50 |
+
# Enhanced Internal State with more nuanced emotional and cognitive parameters
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
+
"valence": 0.5, # Overall positivity or negativity
|
54 |
+
"arousal": 0.5, # Level of excitement or calmness
|
55 |
+
"dominance": 0.5, # Feeling of control in the interaction
|
56 |
+
"curiosity": 0.5, # Drive to learn and explore new information
|
57 |
+
"frustration": 0.0, # Level of frustration or impatience
|
58 |
+
"confidence": 0.7 # Confidence in providing accurate and relevant responses
|
59 |
},
|
60 |
+
"cognitive_load": {
|
61 |
+
"memory_load": 0.0, # How much of the current memory capacity is being used
|
62 |
+
"processing_intensity": 0.0 # How hard the model is working to process information
|
63 |
+
},
|
64 |
+
"introspection_level": 0.0,
|
65 |
+
"engagement_level": 0.5 # How engaged the model is with the current conversation
|
66 |
}
|
67 |
|
68 |
+
# More dynamic and adaptive goals
|
69 |
self.goals = [
|
70 |
+
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
71 |
+
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
72 |
+
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
73 |
+
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0}, # New goal for proactive learning
|
74 |
+
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0} # New goal for emotional intelligence
|
75 |
]
|
76 |
|
77 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
78 |
|
79 |
+
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
80 |
+
# Update emotions with more nuanced changes
|
81 |
+
for emotion, delta in emotion_deltas.items():
|
82 |
+
if emotion in self.internal_state["emotions"]:
|
83 |
+
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
84 |
+
|
85 |
+
# Update cognitive load
|
86 |
+
for load_type, delta in cognitive_load_deltas.items():
|
87 |
+
if load_type in self.internal_state["cognitive_load"]:
|
88 |
+
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
89 |
+
|
90 |
+
# Update introspection and engagement levels
|
91 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
92 |
+
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
93 |
+
|
94 |
+
# Activate dormant goals based on internal state
|
95 |
+
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
96 |
+
self.goals[3]["status"] = "active" # Activate knowledge gap filling
|
97 |
+
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
98 |
+
self.goals[4]["status"] = "active" # Activate emotional adaptation
|
99 |
|
100 |
def update_knowledge_graph(self, entities, relationships):
|
101 |
for entity in entities:
|
|
|
121 |
}
|
122 |
|
123 |
def calculate_coherence(self):
|
124 |
+
# Improved coherence calculation considering conversation history and internal state
|
125 |
+
if not self.conversation_history:
|
126 |
+
return 0.95
|
127 |
+
|
128 |
+
coherence_scores = []
|
129 |
+
for i in range(1, len(self.conversation_history)):
|
130 |
+
current_message = self.conversation_history[i]['content']
|
131 |
+
previous_message = self.conversation_history[i-1]['content']
|
132 |
+
similarity_score = util.pytorch_cos_sim(
|
133 |
+
self.embedding_model.encode(current_message, convert_to_tensor=True),
|
134 |
+
self.embedding_model.encode(previous_message, convert_to_tensor=True)
|
135 |
+
).item()
|
136 |
+
coherence_scores.append(similarity_score)
|
137 |
+
|
138 |
+
average_coherence = np.mean(coherence_scores)
|
139 |
+
|
140 |
+
# Adjust coherence based on internal state
|
141 |
+
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
142 |
+
average_coherence -= 0.1 # Reduce coherence if under heavy processing load
|
143 |
+
if self.internal_state["emotions"]["frustration"] > 0.5:
|
144 |
+
average_coherence -= 0.15 # Reduce coherence if frustrated
|
145 |
+
|
146 |
+
return np.clip(average_coherence, 0.0, 1.0)
|
147 |
|
148 |
def calculate_relevance(self):
|
149 |
+
# More sophisticated relevance calculation using knowledge graph and goal priorities
|
150 |
+
if not self.conversation_history:
|
151 |
+
return 0.9
|
152 |
+
|
153 |
+
last_user_message = self.conversation_history[-1]['content']
|
154 |
+
relevant_entities = self.extract_entities(last_user_message)
|
155 |
+
relevance_score = 0
|
156 |
+
|
157 |
+
# Check if entities are present in the knowledge graph
|
158 |
+
for entity in relevant_entities:
|
159 |
+
if entity in self.knowledge_graph:
|
160 |
+
relevance_score += 0.2
|
161 |
+
|
162 |
+
# Consider current goals and their priorities
|
163 |
+
for goal in self.goals:
|
164 |
+
if goal["status"] == "active":
|
165 |
+
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
166 |
+
relevance_score += goal["priority"] * 0.5 # Boost relevance if aligned with primary goal
|
167 |
+
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
168 |
+
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
169 |
+
relevance_score += goal["priority"] * 0.3 # Boost relevance if triggering knowledge gap filling
|
170 |
+
|
171 |
+
return np.clip(relevance_score, 0.0, 1.0)
|
172 |
+
|
173 |
def detect_bias(self):
|
174 |
+
# Enhanced bias detection using sentiment analysis and internal state monitoring
|
175 |
+
bias_score = 0.0
|
176 |
+
|
177 |
+
# Analyze sentiment of recent conversation history
|
178 |
+
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
179 |
+
if recent_messages:
|
180 |
+
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
181 |
+
if average_valence < 0.4 or average_valence > 0.6:
|
182 |
+
bias_score += 0.2 # Potential bias if sentiment is strongly positive or negative
|
183 |
+
|
184 |
+
# Check for emotional extremes in internal state
|
185 |
+
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
186 |
+
bias_score += 0.15
|
187 |
+
if self.internal_state["emotions"]["dominance"] > 0.8:
|
188 |
+
bias_score += 0.1
|
189 |
|
190 |
+
return np.clip(bias_score, 0.0, 1.0)
|
191 |
+
|
192 |
+
def suggest_strategy_adjustment(self):
|
193 |
+
# More nuanced strategy adjustments based on metacognitive analysis and internal state
|
194 |
+
adjustments = []
|
195 |
+
|
196 |
+
if self.metacognitive_layer["coherence_score"] < 0.7:
|
197 |
+
adjustments.append("Focus on improving coherence by explicitly connecting ideas between turns.")
|
198 |
+
if self.metacognitive_layer["relevance_score"] < 0.7:
|
199 |
+
adjustments.append("Increase relevance by directly addressing user queries and utilizing stored knowledge.")
|
200 |
+
if self.metacognitive_layer["bias_detection"] > 0.3:
|
201 |
+
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
202 |
+
|
203 |
+
# Internal state-driven adjustments
|
204 |
+
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
205 |
+
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
206 |
+
if self.internal_state["emotions"]["frustration"] > 0.6:
|
207 |
+
adjustments.append("Frustration level is elevated. Prioritize concise and direct responses. Consider asking clarifying questions.")
|
208 |
+
if self.internal_state["emotions"]["curiosity"] > 0.8 and self.internal_state["cognitive_load"]["processing_intensity"] < 0.5:
|
209 |
+
adjustments.append("High curiosity and low processing load. Explore the topic further by asking relevant questions or seeking external information.")
|
210 |
+
|
211 |
+
if not adjustments:
|
212 |
+
return "Current strategy is effective. Continue with the current approach."
|
213 |
+
else:
|
214 |
+
return " ".join(adjustments)
|
215 |
+
|
216 |
def introspect(self):
|
217 |
introspection_report = "Introspection Report:\n"
|
218 |
+
introspection_report += f" Current Emotional State:\n"
|
219 |
+
for emotion, value in self.internal_state['emotions'].items():
|
220 |
+
introspection_report += f" - {emotion.capitalize()}: {value:.2f}\n"
|
221 |
+
introspection_report += f" Cognitive Load:\n"
|
222 |
+
for load_type, value in self.internal_state['cognitive_load'].items():
|
223 |
+
introspection_report += f" - {load_type.capitalize()}: {value:.2f}\n"
|
224 |
introspection_report += f" Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
|
225 |
+
introspection_report += f" Engagement Level: {self.internal_state['engagement_level']:.2f}\n"
|
226 |
introspection_report += " Current Goals:\n"
|
227 |
for goal in self.goals:
|
228 |
+
introspection_report += f" - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']}, Progress: {goal['progress']:.2f})\n"
|
229 |
introspection_report += "Metacognitive Layer Report\n"
|
230 |
introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
|
231 |
introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
|
|
|
234 |
return introspection_report
|
235 |
|
236 |
def adjust_response_based_on_state(self, response):
|
237 |
+
# More sophisticated response adjustment based on internal state
|
238 |
if self.internal_state["introspection_level"] > 0.7:
|
239 |
response = self.introspect() + "\n\n" + response
|
240 |
|
241 |
valence = self.internal_state["emotions"]["valence"]
|
242 |
arousal = self.internal_state["emotions"]["arousal"]
|
243 |
+
curiosity = self.internal_state["emotions"]["curiosity"]
|
244 |
+
frustration = self.internal_state["emotions"]["frustration"]
|
245 |
+
confidence = self.internal_state["emotions"]["confidence"]
|
246 |
|
247 |
+
# Adjust tone based on valence and arousal
|
248 |
if valence < 0.4:
|
249 |
if arousal > 0.6:
|
250 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
|
|
256 |
else:
|
257 |
response = "I'm in a good mood and happy to help. " + response
|
258 |
|
259 |
+
# Adjust response based on other emotional states
|
260 |
+
if curiosity > 0.7:
|
261 |
+
response += " I'm very curious about this topic, could you tell me more?"
|
262 |
+
if frustration > 0.5:
|
263 |
+
response = "I'm finding this a bit challenging, but I'll give it another try. " + response
|
264 |
+
if confidence < 0.5:
|
265 |
+
response = "I'm not entirely sure about this, but here's what I think: " + response
|
266 |
+
|
267 |
+
# Adjust based on cognitive load
|
268 |
+
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
269 |
+
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
270 |
+
|
271 |
return response
|
272 |
+
|
273 |
def update_goals(self, user_feedback):
|
274 |
+
# More dynamic goal updates based on feedback and internal state
|
275 |
+
feedback_lower = user_feedback.lower()
|
276 |
+
|
277 |
+
# General feedback
|
278 |
+
if "helpful" in feedback_lower:
|
279 |
for goal in self.goals:
|
280 |
+
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
281 |
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
|
282 |
+
goal["progress"] = min(goal["progress"] + 0.2, 1.0)
|
283 |
+
elif "confusing" in feedback_lower:
|
284 |
+
for goal in self.goals:
|
285 |
+
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
286 |
+
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
287 |
+
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
288 |
+
|
289 |
+
# Goal-specific feedback
|
290 |
+
if "learn more" in feedback_lower:
|
291 |
+
for goal in self.goals:
|
292 |
+
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
293 |
+
goal["priority"] = min(goal["priority"] + 0.2, 1.0)
|
294 |
+
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
|
295 |
+
elif "too repetitive" in feedback_lower:
|
296 |
for goal in self.goals:
|
297 |
+
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
|
298 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
299 |
+
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
300 |
+
|
301 |
+
# Internal state influence on goal updates
|
302 |
+
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
303 |
+
for goal in self.goals:
|
304 |
+
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
305 |
+
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
|
306 |
+
goal["progress"] = min(goal["progress"] + 0.1, 1.0)
|
307 |
|
308 |
def store_information(self, key, value):
|
309 |
new_memory = f"{key}: {value}"
|
310 |
self.persistent_memory.append(new_memory)
|
311 |
self.update_memory_embeddings()
|
312 |
+
self.update_internal_state({}, {"memory_load": 0.1, "processing_intensity": 0.05}, 0, 0.05)
|
313 |
return f"Stored: {key} = {value}"
|
314 |
|
315 |
def retrieve_information(self, query):
|
|
|
328 |
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
|
329 |
|
330 |
relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
|
331 |
+
self.update_internal_state({}, {"memory_load": 0.05, "processing_intensity": 0.1}, 0.1, 0.05)
|
332 |
return "\n".join(relevant_memories)
|
333 |
|
334 |
def update_memory_embeddings(self):
|
|
|
343 |
"valence": 0.5,
|
344 |
"arousal": 0.5,
|
345 |
"dominance": 0.5,
|
346 |
+
"curiosity": 0.5,
|
347 |
+
"frustration": 0.0,
|
348 |
+
"confidence": 0.7
|
349 |
},
|
350 |
+
"cognitive_load": {
|
351 |
+
"memory_load": 0.0,
|
352 |
+
"processing_intensity": 0.0
|
353 |
+
},
|
354 |
+
"introspection_level": 0.0,
|
355 |
+
"engagement_level": 0.5
|
356 |
}
|
357 |
self.goals = [
|
358 |
+
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
359 |
+
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
360 |
+
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
361 |
+
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
362 |
+
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
363 |
]
|
364 |
|
365 |
self.knowledge_graph = nx.DiGraph()
|
|
|
479 |
return f"Error generating response: {str(e)}"
|
480 |
|
481 |
def extract_entities(self, text):
|
482 |
+
# Placeholder for a more advanced entity extraction using NLP techniques
|
483 |
+
# This is a very basic example and should be replaced with a proper NER model
|
484 |
+
words = text.split()
|
485 |
+
entities = [word for word in words if word.isalpha() and word.istitle()]
|
486 |
+
return entities
|
487 |
|
488 |
def extract_relationships(self, text):
|
489 |
+
# Placeholder for relationship extraction - this is a very basic example
|
490 |
+
# Consider using dependency parsing or other NLP techniques for better results
|
491 |
+
sentences = text.split('.')
|
492 |
+
relationships = []
|
493 |
+
for sentence in sentences:
|
494 |
+
words = sentence.split()
|
495 |
+
if len(words) >= 3:
|
496 |
+
for i in range(len(words) - 2):
|
497 |
+
if words[i].istitle() and words[i+2].istitle():
|
498 |
+
relationships.append((words[i], words[i+1], words[i+2]))
|
499 |
+
return relationships
|
500 |
def messages_to_prompt(self, messages):
|
501 |
prompt = ""
|
502 |
for msg in messages:
|
|
|
554 |
|
555 |
self.update_goals(message)
|
556 |
|
557 |
+
# Update internal state based on user input (more nuanced)
|
558 |
+
emotion_deltas = {}
|
559 |
+
cognitive_load_deltas = {}
|
560 |
+
engagement_delta = 0
|
561 |
+
|
562 |
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
563 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1})
|
564 |
+
engagement_delta = -0.1
|
565 |
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
566 |
+
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1})
|
567 |
+
engagement_delta = 0.2
|
568 |
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
569 |
+
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2})
|
570 |
+
engagement_delta = -0.2
|
571 |
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
572 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2})
|
573 |
+
engagement_delta = -0.1
|
574 |
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
575 |
+
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3})
|
576 |
+
engagement_delta = 0.3
|
577 |
+
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
|
578 |
+
cognitive_load_deltas.update({"processing_intensity": 0.2})
|
579 |
+
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1})
|
580 |
+
engagement_delta = 0.1
|
581 |
else:
|
582 |
+
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
583 |
+
engagement_delta = 0.05
|
584 |
+
|
585 |
+
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
586 |
+
emotion_deltas.update({"curiosity": 0.3})
|
587 |
+
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
588 |
+
engagement_delta = 0.2
|
589 |
+
|
590 |
+
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
591 |
|
592 |
|
593 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
|
|
596 |
if len(self.conversation_history) > 10:
|
597 |
self.conversation_history = self.conversation_history[-10:]
|
598 |
|
599 |
+
|
600 |
custom_css = """
|
601 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
602 |
body, .gradio-container {
|