Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from .multimodal_encoder.builder import build_image_tower, build_video_tower | |
from .multimodal_projector.builder import build_vision_projector | |
from llava.constants import IGNORE_INDEX, X_TOKEN_INDEX, DEFAULT_X_PATCH_TOKEN, DEFAULT_X_START_TOKEN, DEFAULT_X_END_TOKEN | |
class LlavaMetaModel: | |
def __init__(self, config): | |
super(LlavaMetaModel, self).__init__(config) | |
if hasattr(config, "mm_image_tower"): | |
self.image_tower = build_image_tower(config, delay_load=True) | |
self.mm_projector = build_vision_projector(config) | |
if hasattr(config, "mm_video_tower"): | |
self.video_tower = build_video_tower(config, delay_load=True) | |
self.mm_projector = build_vision_projector(config) | |
def get_image_tower(self): | |
image_tower = getattr(self, 'image_tower', None) | |
if type(image_tower) is list: | |
image_tower = image_tower[0] | |
return image_tower | |
def get_video_tower(self): | |
video_tower = getattr(self, 'video_tower', None) | |
if type(video_tower) is list: | |
video_tower = video_tower[0] | |
return video_tower | |
def initialize_image_modules(self, model_args, fsdp=None): | |
image_tower = model_args.image_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
self.config.mm_image_tower = image_tower | |
image_tower = build_image_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.image_tower = [image_tower] | |
else: | |
self.image_tower = image_tower | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.mm_hidden_size = image_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
self.mm_projector = build_vision_projector(self.config) | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
def initialize_video_modules(self, model_args, fsdp=None): | |
video_tower = model_args.video_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
self.config.mm_video_tower = video_tower | |
video_tower = build_video_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.video_tower = [video_tower] | |
else: | |
self.video_tower = video_tower | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.mm_hidden_size = video_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
self.mm_projector = build_vision_projector(self.config) | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
class LlavaMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_image_tower(self): | |
return self.get_model().get_image_tower() | |
def get_video_tower(self): | |
return self.get_model().get_video_tower() | |
def get_all_tower(self, keys): | |
tower = {key: getattr(self, f'get_{key}_tower') for key in keys} | |
return tower | |
def encode_images(self, images): | |
image_features = self.get_model().get_image_tower()(images) | |
image_features = self.get_model().mm_projector(image_features) | |
return image_features | |
def encode_videos(self, videos): | |
video_features = self.get_model().get_video_tower()(videos) | |
video_features = self.get_model().mm_projector(video_features) | |
return video_features | |
# | |
# def prepare_inputs_labels_for_multimodal( | |
# self, input_ids, attention_mask, past_key_values, labels, images | |
# ): | |
# vision_tower = self.get_vision_tower() | |
# if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
# if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: | |
# attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
# return input_ids, attention_mask, past_key_values, None, labels | |
# | |
# if type(images) is list or images.ndim == 5: | |
# concat_images = torch.cat([image for image in images], dim=0) | |
# image_features = self.encode_images(concat_images) | |
# split_sizes = [image.shape[0] for image in images] | |
# image_features = torch.split(image_features, split_sizes, dim=0) | |
# image_features = [x.flatten(0, 1) for x in image_features] | |
# else: | |
# image_features = self.encode_images(images) | |
# | |
# new_input_embeds = [] | |
# new_labels = [] if labels is not None else None | |
# cur_image_idx = 0 | |
# for batch_idx, cur_input_ids in enumerate(input_ids): | |
# if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: | |
# # multimodal LLM, but the current sample is not multimodal | |
# # FIXME: this is a hacky fix, for deepspeed zero3 to work | |
# half_len = cur_input_ids.shape[0] // 2 | |
# cur_image_features = image_features[cur_image_idx] | |
# cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
# cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
# cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) | |
# new_input_embeds.append(cur_input_embeds) | |
# if labels is not None: | |
# new_labels.append(labels[batch_idx]) | |
# cur_image_idx += 1 | |
# continue | |
# image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] # 把中间的imgtoken的位置找到 | |
# cur_new_input_embeds = [] | |
# if labels is not None: | |
# cur_labels = labels[batch_idx] | |
# cur_new_labels = [] | |
# assert cur_labels.shape == cur_input_ids.shape | |
# while image_token_indices.numel() > 0: | |
# cur_image_features = image_features[cur_image_idx] | |
# image_token_start = image_token_indices[0] | |
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) | |
# cur_new_input_embeds.append(cur_image_features) | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) | |
# if labels is not None: | |
# cur_new_labels.append(cur_labels[:image_token_start]) | |
# cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
# cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) | |
# cur_labels = cur_labels[image_token_start+2:] | |
# else: | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) # imgtoken之前的text拿出来,好像都是模板套话 | |
# cur_new_input_embeds.append(cur_image_features) | |
# if labels is not None: | |
# cur_new_labels.append(cur_labels[:image_token_start]) | |
# cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
# cur_labels = cur_labels[image_token_start+1:] | |
# cur_image_idx += 1 | |
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
# cur_input_ids = cur_input_ids[image_token_start+2:] | |
# else: | |
# cur_input_ids = cur_input_ids[image_token_start+1:] # imgtoken之后的text拿出来,是真的question | |
# image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
# if cur_input_ids.numel() > 0: | |
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) | |
# else: | |
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
# if labels is not None: | |
# cur_new_labels.append(cur_labels) | |
# cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] # 前面text+图片+后面question | |
# cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
# new_input_embeds.append(cur_new_input_embeds) | |
# if labels is not None: | |
# cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
# new_labels.append(cur_new_labels) | |
# | |
# if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
# max_len = max(x.shape[0] for x in new_input_embeds) | |
# | |
# new_input_embeds_align = [] | |
# for cur_new_embed in new_input_embeds: | |
# cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
# new_input_embeds_align.append(cur_new_embed) | |
# new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
# | |
# if labels is not None: | |
# new_labels_align = [] | |
# _new_labels = new_labels | |
# for cur_new_label in new_labels: | |
# cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
# new_labels_align.append(cur_new_label) | |
# new_labels = torch.stack(new_labels_align, dim=0) | |
# | |
# if attention_mask is not None: | |
# new_attention_mask = [] | |
# for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): | |
# new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
# new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
# cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) | |
# new_attention_mask.append(cur_new_attention_mask) | |
# attention_mask = torch.stack(new_attention_mask, dim=0) | |
# assert attention_mask.shape == new_labels.shape | |
# else: | |
# new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
# if labels is not None: | |
# new_labels = torch.stack(new_labels, dim=0) | |
# | |
# if attention_mask is not None: | |
# new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
# attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
# assert attention_mask.shape == new_input_embeds.shape[:2] | |
# | |
# return None, attention_mask, past_key_values, new_input_embeds, new_labels | |
# | |
# def initialize_vision_tokenizer(self, model_args, tokenizer): | |
# if model_args.mm_use_im_patch_token: | |
# tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
# self.resize_token_embeddings(len(tokenizer)) | |
# | |
# if model_args.mm_use_im_start_end: | |
# num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
# self.resize_token_embeddings(len(tokenizer)) | |
# | |
# if num_new_tokens > 0: | |
# input_embeddings = self.get_input_embeddings().weight.data | |
# output_embeddings = self.get_output_embeddings().weight.data | |
# | |
# input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
# dim=0, keepdim=True) | |
# output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
# dim=0, keepdim=True) | |
# | |
# input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
# output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
# | |
# if model_args.tune_mm_mlp_adapter: | |
# for p in self.get_input_embeddings().parameters(): | |
# p.requires_grad = True | |
# for p in self.get_output_embeddings().parameters(): | |
# p.requires_grad = False | |
# | |
# if model_args.pretrain_mm_mlp_adapter: | |
# mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
# embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
# assert num_new_tokens == 2 | |
# if input_embeddings.shape == embed_tokens_weight.shape: | |
# input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
# elif embed_tokens_weight.shape[0] == num_new_tokens: | |
# input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
# else: | |
# raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
# elif model_args.mm_use_im_patch_token: | |
# if model_args.tune_mm_mlp_adapter: | |
# for p in self.get_input_embeddings().parameters(): | |
# p.requires_grad = False | |
# for p in self.get_output_embeddings().parameters(): | |
# p.requires_grad = False | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, X_modalities | |
): | |
''' | |
X_modalities [ | |
[img_feature, img_feature, video_feature, audio_feature], | |
['image', 'image', 'video', 'audio'] | |
] | |
''' | |
Xs, keys = X_modalities | |
all_tower = self.get_all_tower(set(keys)) if len(keys) > 0 else None | |
# print(2.5) | |
if all_tower is None or X_modalities[0][0] is None or input_ids.shape[1] == 1: | |
if past_key_values is not None and all_tower is not None and Xs is not None and input_ids.shape[1] == 1: | |
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
return input_ids, attention_mask, past_key_values, None, labels | |
# if type(images) is list or images.ndim == 5: | |
# concat_images = torch.cat([image for image in images], dim=0) | |
# image_features = self.encode_images(concat_images) | |
# split_sizes = [image.shape[0] for image in images] | |
# image_features = torch.split(image_features, split_sizes, dim=0) | |
# image_features = [x.flatten(0, 1) for x in image_features] | |
# else: | |
print(keys) | |
X_features = [getattr(self, f'encode_{key}s')(X.unsqueeze(0)) for X, key in zip(Xs, keys)] # expand to get batchsize | |
# X_features = [] | |
# # print(2.5, *[i.shape for i in Xs], keys) | |
# for X, key in zip(Xs, keys): | |
# temp_X = X.unsqueeze(0) | |
# # print(2.6) | |
# # fn = getattr(self, f'encode_{key}s') | |
# if key == 'image': | |
# out = self.encode_images(temp_X) | |
# # print(2.65, 'image', out.shape) | |
# elif key == 'video': | |
# out = self.encode_videos(temp_X) | |
# # print(2.65, 'video', out.shape) | |
# else: | |
# raise NameError(f'{key}') | |
# # print(2.8, out.shape) | |
# X_features.append(out) | |
X_features = [x.flatten(0, 1) for x in X_features] | |
# print([[j, i.shape] for i, j in zip(X_features, keys)]) | |
new_input_embeds = [] | |
new_labels = [] if labels is not None else None | |
cur_X_idx = 0 | |
# print(2.9, input_ids.shape) | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
# print(333333) | |
if (torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0)).sum() == 0: | |
# multimodal LLM, but the current sample is not multimodal | |
# FIXME: this is a hacky fix, for deepspeed zero3 to work | |
half_len = cur_input_ids.shape[0] // 2 | |
cur_X_features = X_features[cur_X_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_X_features[0:0], cur_input_embeds_2], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_X_idx += 1 ############## 注意这里跳过了,如果一个sample是一个modal,那么就跳过1个全zero的modal,如果一个sample对应多个modal,这里的训练逻辑不对!!! | |
###### 但似乎不影响1个sample的inference | |
###### 一个text对应视频和图片,直接走下边了。只有1个text,传入none或者1个/2个全zero都无所谓,反正没有下一个数据了。 | |
continue | |
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] # 把中间的imgtoken的位置找到 | |
cur_new_input_embeds = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
# print(4444444444) | |
while X_token_indices.numel() > 0: | |
cur_X_features = X_features[cur_X_idx] | |
X_token_start = X_token_indices[0] | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False): | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:X_token_start-1]).detach()) | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[X_token_start-1:X_token_start])) | |
cur_new_input_embeds.append(cur_X_features) | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[X_token_start+1:X_token_start+2])) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:X_token_start]) | |
cur_new_labels.append(torch.full((cur_X_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_new_labels.append(cur_labels[X_token_start:X_token_start+1]) | |
cur_labels = cur_labels[X_token_start+2:] | |
else: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:X_token_start])) # imgtoken之前的text拿出来,好像都是模板套话 | |
cur_new_input_embeds.append(cur_X_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:X_token_start]) | |
cur_new_labels.append(torch.full((cur_X_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[X_token_start+1:] | |
cur_X_idx += 1 | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False): | |
cur_input_ids = cur_input_ids[X_token_start+2:] | |
else: | |
cur_input_ids = cur_input_ids[X_token_start+1:] # imgtoken之后的text拿出来,是真的question | |
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] | |
# print(55555555555555555) | |
if cur_input_ids.numel() > 0: | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False): | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) | |
else: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] # 前面text+图片+后面question | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
if labels is not None: | |
new_labels_align = [] | |
_new_labels = new_labels | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
if attention_mask is not None: | |
new_attention_mask = [] | |
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): | |
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if attention_mask is not None: | |
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
return None, attention_mask, past_key_values, new_input_embeds, new_labels | |
def initialize_X_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_x_patch_token: | |
for x in model_args.X: | |
tokenizer.add_tokens([DEFAULT_X_PATCH_TOKEN[x.upper()]], special_tokens=True) | |
# tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_x_start_end: | |
num_new_tokens = 0 | |
for x in model_args.X: | |
num_new_tokens += tokenizer.add_tokens([DEFAULT_X_START_TOKEN[x.upper()], DEFAULT_X_END_TOKEN[x.upper()]], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_x_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False |