omkarenator commited on
Commit
005657d
1 Parent(s): c2d67bd

add citations!

Browse files
Files changed (4) hide show
  1. bibliography.bib +524 -0
  2. favicon.ico +0 -0
  3. main.py +107 -142
  4. requirements.txt +1 -1
bibliography.bib ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @misc{refinedweb,
2
+ title={The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only},
3
+ author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
4
+ year={2023},
5
+ eprint={2306.01116},
6
+ archivePrefix={arXiv},
7
+ primaryClass={cs.CL}
8
+ }
9
+ @article{redpajama-v1,
10
+ author = {Together Computer},
11
+ title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
12
+ month = {April},
13
+ year = 2023,
14
+ url = {https://github.com/togethercomputer/RedPajama-Data/tree/rp_v1}
15
+ }
16
+ @article{redpajama-v2,
17
+ author = {Together Computer},
18
+ title = {RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models},
19
+ month = {October},
20
+ year = 2023,
21
+ url = {https://github.com/togethercomputer/RedPajama-Data}
22
+ }
23
+ @article{dolma,
24
+ title = {Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research},
25
+ author={
26
+ Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and
27
+ Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and
28
+ Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and
29
+ Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and
30
+ Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and
31
+ Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and
32
+ Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo
33
+ },
34
+ year = {2024},
35
+ journal={arXiv preprint},
36
+ }
37
+ @article{fineweb,
38
+ author = {Guilherme Penedo and Hynek Kydlíček and Loubna Ben Allal and Anton Lozhkov and Colin Raffel and Leandro Werra and Thomas Wolf},
39
+ title = {🍷 FineWeb: decanting the web for the finest text data at scale},
40
+ month = {May},
41
+ year = 2024,
42
+ url = {https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1},
43
+ }
44
+ @misc{cerebras2023slimpajama,
45
+ author = {Soboleva, Daria and Al-Khateeb, Faisal and Myers, Robert and Steeves, Jacob R and Hestness, Joel and Dey, Nolan},
46
+ title = {SlimPajama: A 627B token cleaned and deduplicated version of RedPajama},
47
+ month = {June},
48
+ year = 2023,
49
+ url = {https://huggingface.co/datasets/cerebras/SlimPajama-627B},
50
+ }
51
+ @article{thepile,
52
+ title={The {P}ile: An 800{GB} dataset of diverse text for language modeling},
53
+ author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
54
+ journal={arXiv preprint arXiv:2101.00027},
55
+ year={2020}
56
+ }
57
+ @misc{c4,
58
+ title={Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
59
+ author={Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
60
+ year={2023},
61
+ eprint={1910.10683},
62
+ archivePrefix={arXiv},
63
+ primaryClass={cs.LG}
64
+ }
65
+ @article{dclm,
66
+ author = {Jeffrey Li and
67
+ Alex Fang and
68
+ Georgios Smyrnis and
69
+ Maor Ivgi and
70
+ Matt Jordan and
71
+ Samir Yitzhak Gadre and
72
+ Hritik Bansal and
73
+ Etash Kumar Guha and
74
+ Sedrick Keh and
75
+ Kushal Arora and
76
+ Saurabh Garg and
77
+ Rui Xin and
78
+ Niklas Muennighoff and
79
+ Reinhard Heckel and
80
+ Jean Mercat and
81
+ Mayee Chen and
82
+ Suchin Gururangan and
83
+ Mitchell Wortsman and
84
+ Alon Albalak and
85
+ Yonatan Bitton and
86
+ Marianna Nezhurina and
87
+ Amro Abbas and
88
+ Cheng{-}Yu Hsieh and
89
+ Dhruba Ghosh and
90
+ Josh Gardner and
91
+ Maciej Kilian and
92
+ Hanlin Zhang and
93
+ Rulin Shao and
94
+ Sarah M. Pratt and
95
+ Sunny Sanyal and
96
+ Gabriel Ilharco and
97
+ Giannis Daras and
98
+ Kalyani Marathe and
99
+ Aaron Gokaslan and
100
+ Jieyu Zhang and
101
+ Khyathi Raghavi Chandu and
102
+ Thao Nguyen and
103
+ Igor Vasiljevic and
104
+ Sham M. Kakade and
105
+ Shuran Song and
106
+ Sujay Sanghavi and
107
+ Fartash Faghri and
108
+ Sewoong Oh and
109
+ Luke Zettlemoyer and
110
+ Kyle Lo and
111
+ Alaaeldin El{-}Nouby and
112
+ Hadi Pouransari and
113
+ Alexander Toshev and
114
+ Stephanie Wang and
115
+ Dirk Groeneveld and
116
+ Luca Soldaini and
117
+ Pang Wei Koh and
118
+ Jenia Jitsev and
119
+ Thomas Kollar and
120
+ Alexandros G. Dimakis and
121
+ Yair Carmon and
122
+ Achal Dave and
123
+ Ludwig Schmidt and
124
+ Vaishaal Shankar},
125
+ title = {DataComp-LM: In search of the next generation of training sets for
126
+ language models},
127
+ journal = {CoRR},
128
+ volume = {abs/2406.11794},
129
+ year = {2024},
130
+ url = {https://doi.org/10.48550/arXiv.2406.11794},
131
+ doi = {10.48550/ARXIV.2406.11794},
132
+ eprinttype = {arXiv},
133
+ eprint = {2406.11794},
134
+ timestamp = {Mon, 02 Sep 2024 16:44:37 +0200},
135
+ biburl = {https://dblp.org/rec/journals/corr/abs-2406-11794.bib},
136
+ bibsource = {dblp computer science bibliography, https://dblp.org}
137
+ }
138
+ @article{gopher,
139
+ author = {Jack W. Rae and
140
+ Sebastian Borgeaud and
141
+ Trevor Cai and
142
+ Katie Millican and
143
+ Jordan Hoffmann and
144
+ H. Francis Song and
145
+ John Aslanides and
146
+ Sarah Henderson and
147
+ Roman Ring and
148
+ Susannah Young and
149
+ Eliza Rutherford and
150
+ Tom Hennigan and
151
+ Jacob Menick and
152
+ Albin Cassirer and
153
+ Richard Powell and
154
+ George van den Driessche and
155
+ Lisa Anne Hendricks and
156
+ Maribeth Rauh and
157
+ Po{-}Sen Huang and
158
+ Amelia Glaese and
159
+ Johannes Welbl and
160
+ Sumanth Dathathri and
161
+ Saffron Huang and
162
+ Jonathan Uesato and
163
+ John Mellor and
164
+ Irina Higgins and
165
+ Antonia Creswell and
166
+ Nat McAleese and
167
+ Amy Wu and
168
+ Erich Elsen and
169
+ Siddhant M. Jayakumar and
170
+ Elena Buchatskaya and
171
+ David Budden and
172
+ Esme Sutherland and
173
+ Karen Simonyan and
174
+ Michela Paganini and
175
+ Laurent Sifre and
176
+ Lena Martens and
177
+ Xiang Lorraine Li and
178
+ Adhiguna Kuncoro and
179
+ Aida Nematzadeh and
180
+ Elena Gribovskaya and
181
+ Domenic Donato and
182
+ Angeliki Lazaridou and
183
+ Arthur Mensch and
184
+ Jean{-}Baptiste Lespiau and
185
+ Maria Tsimpoukelli and
186
+ Nikolai Grigorev and
187
+ Doug Fritz and
188
+ Thibault Sottiaux and
189
+ Mantas Pajarskas and
190
+ Toby Pohlen and
191
+ Zhitao Gong and
192
+ Daniel Toyama and
193
+ Cyprien de Masson d'Autume and
194
+ Yujia Li and
195
+ Tayfun Terzi and
196
+ Vladimir Mikulik and
197
+ Igor Babuschkin and
198
+ Aidan Clark and
199
+ Diego de Las Casas and
200
+ Aurelia Guy and
201
+ Chris Jones and
202
+ James Bradbury and
203
+ Matthew J. Johnson and
204
+ Blake A. Hechtman and
205
+ Laura Weidinger and
206
+ Iason Gabriel and
207
+ William Isaac and
208
+ Edward Lockhart and
209
+ Simon Osindero and
210
+ Laura Rimell and
211
+ Chris Dyer and
212
+ Oriol Vinyals and
213
+ Kareem Ayoub and
214
+ Jeff Stanway and
215
+ Lorrayne Bennett and
216
+ Demis Hassabis and
217
+ Koray Kavukcuoglu and
218
+ Geoffrey Irving},
219
+ title = {Scaling Language Models: Methods, Analysis {\&} Insights from
220
+ Training Gopher},
221
+ journal = {CoRR},
222
+ volume = {abs/2112.11446},
223
+ year = {2021},
224
+ url = {https://arxiv.org/abs/2112.11446},
225
+ eprinttype = {arXiv},
226
+ eprint = {2112.11446},
227
+ timestamp = {Sat, 02 Dec 2023 13:23:51 +0100},
228
+ biburl = {https://dblp.org/rec/journals/corr/abs-2112-11446.bib},
229
+ bibsource = {dblp computer science bibliography, https://dblp.org}
230
+ }
231
+ @article{radford2019language,
232
+ title={Language Models are Unsupervised Multitask Learners},
233
+ author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
234
+ year={2019}
235
+ }
236
+ @inproceedings{barbaresi-2021-trafilatura,
237
+ title = {Trafilatura: A Web Scraping Library and Command-Line Tool for Text Discovery and Extraction},
238
+ author = "Barbaresi, Adrien",
239
+ booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations",
240
+ pages = "122--131",
241
+ publisher = "Association for Computational Linguistics",
242
+ url = "https://aclanthology.org/2021.acl-demo.15",
243
+ year = 2021,
244
+ }
245
+ @article{joulin2016fasttext,
246
+ title={FastText.zip: Compressing text classification models},
247
+ author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
248
+ journal={arXiv preprint arXiv:1612.03651},
249
+ year={2016}
250
+ }
251
+ @article{joulin2016bag,
252
+ title={Bag of Tricks for Efficient Text Classification},
253
+ author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
254
+ journal={arXiv preprint arXiv:1607.01759},
255
+ year={2016}
256
+ }
257
+ @misc{penedo2024datatrove,
258
+ author = {Penedo, Guilherme and Kydlíček, Hynek and Cappelli, Alessandro and Sasko, Mario and Wolf, Thomas},
259
+ title = {DataTrove: large scale data processing},
260
+ year = {2024},
261
+ publisher = {GitHub},
262
+ journal = {GitHub repository},
263
+ url = {https://github.com/huggingface/datatrove}
264
+ }
265
+ @misc{chiang2024chatbot,
266
+ title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
267
+ author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
268
+ year={2024},
269
+ eprint={2403.04132},
270
+ archivePrefix={arXiv},
271
+ primaryClass={cs.AI}
272
+ }
273
+ @misc{rae2022scaling,
274
+ title={Scaling Language Models: Methods, Analysis & Insights from Training Gopher},
275
+ author={Jack W. Rae and Sebastian Borgeaud and Trevor Cai and Katie Millican and Jordan Hoffmann and Francis Song and John Aslanides and Sarah Henderson and Roman Ring and Susannah Young and Eliza Rutherford and Tom Hennigan and Jacob Menick and Albin Cassirer and Richard Powell and George van den Driessche and Lisa Anne Hendricks and Maribeth Rauh and Po-Sen Huang and Amelia Glaese and Johannes Welbl and Sumanth Dathathri and Saffron Huang and Jonathan Uesato and John Mellor and Irina Higgins and Antonia Creswell and Nat McAleese and Amy Wu and Erich Elsen and Siddhant Jayakumar and Elena Buchatskaya and David Budden and Esme Sutherland and Karen Simonyan and Michela Paganini and Laurent Sifre and Lena Martens and Xiang Lorraine Li and Adhiguna Kuncoro and Aida Nematzadeh and Elena Gribovskaya and Domenic Donato and Angeliki Lazaridou and Arthur Mensch and Jean-Baptiste Lespiau and Maria Tsimpoukelli and Nikolai Grigorev and Doug Fritz and Thibault Sottiaux and Mantas Pajarskas and Toby Pohlen and Zhitao Gong and Daniel Toyama and Cyprien de Masson d'Autume and Yujia Li and Tayfun Terzi and Vladimir Mikulik and Igor Babuschkin and Aidan Clark and Diego de Las Casas and Aurelia Guy and Chris Jones and James Bradbury and Matthew Johnson and Blake Hechtman and Laura Weidinger and Iason Gabriel and William Isaac and Ed Lockhart and Simon Osindero and Laura Rimell and Chris Dyer and Oriol Vinyals and Kareem Ayoub and Jeff Stanway and Lorrayne Bennett and Demis Hassabis and Koray Kavukcuoglu and Geoffrey Irving},
276
+ year={2022},
277
+ eprint={2112.11446},
278
+ archivePrefix={arXiv},
279
+ primaryClass={cs.CL}
280
+ }
281
+ @misc{lee2022deduplicating,
282
+ title={Deduplicating Training Data Makes Language Models Better},
283
+ author={Katherine Lee and Daphne Ippolito and Andrew Nystrom and Chiyuan Zhang and Douglas Eck and Chris Callison-Burch and Nicholas Carlini},
284
+ year={2022},
285
+ eprint={2107.06499},
286
+ archivePrefix={arXiv},
287
+ primaryClass={cs.CL}
288
+ }
289
+ @misc{carlini2023quantifying,
290
+ title={Quantifying Memorization Across Neural Language Models},
291
+ author={Nicholas Carlini and Daphne Ippolito and Matthew Jagielski and Katherine Lee and Florian Tramer and Chiyuan Zhang},
292
+ year={2023},
293
+ eprint={2202.07646},
294
+ archivePrefix={arXiv},
295
+ primaryClass={cs.LG}
296
+ }
297
+ @misc{touvron2023llama,
298
+ title={LLaMA: Open and Efficient Foundation Language Models},
299
+ author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
300
+ year={2023},
301
+ eprint={2302.13971},
302
+ archivePrefix={arXiv},
303
+ primaryClass={cs.CL}
304
+ }
305
+ @article{jaccard1912distribution,
306
+ title={The distribution of the flora in the alpine zone. 1},
307
+ author={Jaccard, Paul},
308
+ journal={New phytologist},
309
+ volume={11},
310
+ number={2},
311
+ pages={37--50},
312
+ year={1912},
313
+ publisher={Wiley Online Library}
314
+ }
315
+ @misc{albalak2024survey,
316
+ title={A Survey on Data Selection for Language Models},
317
+ author={Alon Albalak and Yanai Elazar and Sang Michael Xie and Shayne Longpre and Nathan Lambert and Xinyi Wang and Niklas Muennighoff and Bairu Hou and Liangming Pan and Haewon Jeong and Colin Raffel and Shiyu Chang and Tatsunori Hashimoto and William Yang Wang},
318
+ year={2024},
319
+ eprint={2402.16827},
320
+ archivePrefix={arXiv},
321
+ primaryClass={cs.CL}
322
+ }
323
+ @misc{longpre2023pretrainers,
324
+ title={A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity},
325
+ author={Shayne Longpre and Gregory Yauney and Emily Reif and Katherine Lee and Adam Roberts and Barret Zoph and Denny Zhou and Jason Wei and Kevin Robinson and David Mimno and Daphne Ippolito},
326
+ year={2023},
327
+ eprint={2305.13169},
328
+ archivePrefix={arXiv},
329
+ primaryClass={cs.CL}
330
+ }
331
+ @misc{wenzek2019ccnet,
332
+ title={CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data},
333
+ author={Guillaume Wenzek and Marie-Anne Lachaux and Alexis Conneau and Vishrav Chaudhary and Francisco Guzmán and Armand Joulin and Edouard Grave},
334
+ year={2019},
335
+ eprint={1911.00359},
336
+ archivePrefix={arXiv},
337
+ primaryClass={cs.CL}
338
+ }
339
+ @misc{soldaini2024dolma,
340
+ title={Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research},
341
+ author={Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo},
342
+ year={2024},
343
+ eprint={2402.00159},
344
+ archivePrefix={arXiv},
345
+ primaryClass={cs.CL}
346
+ }
347
+ @misc{ouyang2022training,
348
+ title={Training language models to follow instructions with human feedback},
349
+ author={Long Ouyang and Jeff Wu and Xu Jiang and Diogo Almeida and Carroll L. Wainwright and Pamela Mishkin and Chong Zhang and Sandhini Agarwal and Katarina Slama and Alex Ray and John Schulman and Jacob Hilton and Fraser Kelton and Luke Miller and Maddie Simens and Amanda Askell and Peter Welinder and Paul Christiano and Jan Leike and Ryan Lowe},
350
+ year={2022},
351
+ eprint={2203.02155},
352
+ archivePrefix={arXiv},
353
+ primaryClass={cs.CL}
354
+ }
355
+ @misc{hoffmann2022training,
356
+ title={Training Compute-Optimal Large Language Models},
357
+ author={Jordan Hoffmann and Sebastian Borgeaud and Arthur Mensch and Elena Buchatskaya and Trevor Cai and Eliza Rutherford and Diego de Las Casas and Lisa Anne Hendricks and Johannes Welbl and Aidan Clark and Tom Hennigan and Eric Noland and Katie Millican and George van den Driessche and Bogdan Damoc and Aurelia Guy and Simon Osindero and Karen Simonyan and Erich Elsen and Jack W. Rae and Oriol Vinyals and Laurent Sifre},
358
+ year={2022},
359
+ eprint={2203.15556},
360
+ archivePrefix={arXiv},
361
+ primaryClass={cs.CL}
362
+ }
363
+ @misc{muennighoff2023scaling,
364
+ title={Scaling Data-Constrained Language Models},
365
+ author={Niklas Muennighoff and Alexander M. Rush and Boaz Barak and Teven Le Scao and Aleksandra Piktus and Nouamane Tazi and Sampo Pyysalo and Thomas Wolf and Colin Raffel},
366
+ year={2023},
367
+ eprint={2305.16264},
368
+ archivePrefix={arXiv},
369
+ primaryClass={cs.CL}
370
+ }
371
+ @misc{hernandez2022scaling,
372
+ title={Scaling Laws and Interpretability of Learning from Repeated Data},
373
+ author={Danny Hernandez and Tom Brown and Tom Conerly and Nova DasSarma and Dawn Drain and Sheer El-Showk and Nelson Elhage and Zac Hatfield-Dodds and Tom Henighan and Tristan Hume and Scott Johnston and Ben Mann and Chris Olah and Catherine Olsson and Dario Amodei and Nicholas Joseph and Jared Kaplan and Sam McCandlish},
374
+ year={2022},
375
+ eprint={2205.10487},
376
+ archivePrefix={arXiv},
377
+ primaryClass={cs.LG}
378
+ }
379
+ @article{llama3modelcard,
380
+
381
+ title={Llama 3 Model Card},
382
+
383
+ author={AI@Meta},
384
+
385
+ year={2024},
386
+
387
+ url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
388
+
389
+ }
390
+ @misc{jiang2024mixtral,
391
+ title={Mixtral of Experts},
392
+ author={Albert Q. Jiang and Alexandre Sablayrolles and Antoine Roux and Arthur Mensch and Blanche Savary and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Emma Bou Hanna and Florian Bressand and Gianna Lengyel and Guillaume Bour and Guillaume Lample and Lélio Renard Lavaud and Lucile Saulnier and Marie-Anne Lachaux and Pierre Stock and Sandeep Subramanian and Sophia Yang and Szymon Antoniak and Teven Le Scao and Théophile Gervet and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
393
+ year={2024},
394
+ eprint={2401.04088},
395
+ archivePrefix={arXiv},
396
+ primaryClass={cs.LG}
397
+ }
398
+ @article{yuan2024self,
399
+ title={Self-rewarding language models},
400
+ author={Yuan, Weizhe and Pang, Richard Yuanzhe and Cho, Kyunghyun and Sukhbaatar, Sainbayar and Xu, Jing and Weston, Jason},
401
+ journal={arXiv preprint arXiv:2401.10020},
402
+ year={2024}
403
+ }
404
+ @article{verga2024replacing,
405
+ title={Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models},
406
+ author={Verga, Pat and Hofstatter, Sebastian and Althammer, Sophia and Su, Yixuan and Piktus, Aleksandra and Arkhangorodsky, Arkady and Xu, Minjie and White, Naomi and Lewis, Patrick},
407
+ journal={arXiv preprint arXiv:2404.18796},
408
+ year={2024}
409
+ }
410
+ @article{abdin2024phi,
411
+ title={Phi-3 technical report: A highly capable language model locally on your phone},
412
+ author={Abdin, Marah and Jacobs, Sam Ade and Awan, Ammar Ahmad and Aneja, Jyoti and Awadallah, Ahmed and Awadalla, Hany and Bach, Nguyen and Bahree, Amit and Bakhtiari, Arash and Behl, Harkirat and others},
413
+ journal={arXiv preprint arXiv:2404.14219},
414
+ year={2024}
415
+ }
416
+ @misc{meta2024responsible,
417
+ title = {Our responsible approach to Meta AI and Meta Llama 3},
418
+ author = {Meta},
419
+ year = {2024},
420
+ url = {https://ai.meta.com/blog/meta-llama-3-meta-ai-responsibility/},
421
+ note = {Accessed: 2024-05-31}
422
+ }
423
+ @inproceedings{talmor-etal-2019-commonsenseqa,
424
+ title = "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge",
425
+ author = "Talmor, Alon and
426
+ Herzig, Jonathan and
427
+ Lourie, Nicholas and
428
+ Berant, Jonathan",
429
+ booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
430
+ month = jun,
431
+ year = "2019",
432
+ address = "Minneapolis, Minnesota",
433
+ publisher = "Association for Computational Linguistics",
434
+ url = "https://aclanthology.org/N19-1421",
435
+ doi = "10.18653/v1/N19-1421",
436
+ pages = "4149--4158",
437
+ archivePrefix = "arXiv",
438
+ eprint = "1811.00937",
439
+ primaryClass = "cs",
440
+ }
441
+ @inproceedings{zellers-etal-2019-hellaswag,
442
+ title = "HellaSwag: Can a Machine Really Finish Your Sentence?",
443
+ author = "Zellers, Rowan and
444
+ Holtzman, Ari and
445
+ Bisk, Yonatan and
446
+ Farhadi, Ali and
447
+ Choi, Yejin",
448
+ editor = "Korhonen, Anna and
449
+ Traum, David and
450
+ M{\`a}rquez, Llu{\'\i}s",
451
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
452
+ month = jul,
453
+ year = "2019",
454
+ address = "Florence, Italy",
455
+ publisher = "Association for Computational Linguistics",
456
+ url = "https://aclanthology.org/P19-1472",
457
+ doi = "10.18653/v1/P19-1472",
458
+ pages = "4791--4800",
459
+ abstract = "Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as {``}A woman sits at a piano,{''} a machine must select the most likely followup: {``}She sets her fingers on the keys.{''} With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans ({\textgreater}95{\%} accuracy), state-of-the-art models struggle ({\textless}48{\%}). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical {`}Goldilocks{'} zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.",
460
+ }
461
+ @inproceedings{OpenBookQA2018,
462
+ title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
463
+ author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
464
+ booktitle={EMNLP},
465
+ year={2018}
466
+ }
467
+ @misc{bisk2019piqa,
468
+ title={PIQA: Reasoning about Physical Commonsense in Natural Language},
469
+ author={Yonatan Bisk and Rowan Zellers and Ronan Le Bras and Jianfeng Gao and Yejin Choi},
470
+ year={2019},
471
+ eprint={1911.11641},
472
+ archivePrefix={arXiv},
473
+ primaryClass={cs.CL}
474
+ }
475
+ @misc{sap2019socialiqa,
476
+ title={SocialIQA: Commonsense Reasoning about Social Interactions},
477
+ author={Maarten Sap and Hannah Rashkin and Derek Chen and Ronan LeBras and Yejin Choi},
478
+ year={2019},
479
+ eprint={1904.09728},
480
+ archivePrefix={arXiv},
481
+ primaryClass={cs.CL}
482
+ }
483
+ @misc{sakaguchi2019winogrande,
484
+ title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
485
+ author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
486
+ year={2019},
487
+ eprint={1907.10641},
488
+ archivePrefix={arXiv},
489
+ primaryClass={cs.CL}
490
+ }
491
+ @misc{clark2018think,
492
+ title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
493
+ author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
494
+ year={2018},
495
+ eprint={1803.05457},
496
+ archivePrefix={arXiv},
497
+ primaryClass={cs.AI}
498
+ }
499
+ @misc{hendrycks2021measuring,
500
+ title={Measuring Massive Multitask Language Understanding},
501
+ author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
502
+ year={2021},
503
+ eprint={2009.03300},
504
+ archivePrefix={arXiv},
505
+ primaryClass={cs.CY}
506
+ }
507
+ @misc{mitchell2023measuring,
508
+ title={Measuring Data},
509
+ author={Margaret Mitchell and Alexandra Sasha Luccioni and Nathan Lambert and Marissa Gerchick and Angelina McMillan-Major and Ezinwanne Ozoani and Nazneen Rajani and Tristan Thrush and Yacine Jernite and Douwe Kiela},
510
+ year={2023},
511
+ eprint={2212.05129},
512
+ archivePrefix={arXiv},
513
+ primaryClass={cs.AI}
514
+ }
515
+ @INPROCEEDINGS{6785473,
516
+ author={Kardes, Hakan and Agrawal, Siddharth and Xin Wang and Ang Sun},
517
+ booktitle={2014 International Conference on Computing, Networking and Communications (ICNC)},
518
+ title={CCF: Fast and scalable connected component computation in MapReduce},
519
+ year={2014},
520
+ volume={},
521
+ number={},
522
+ pages={994-998},
523
+ keywords={Couplings;Databases;Data mining;Algorithm design and analysis;Social network services;Feature extraction;Cleaning;Transitive Closure;Connected Components;Large Scale Graphs;Hadoop;MapReduce},
524
+ doi={10.1109/ICCNC.2014.6785473}}
favicon.ico ADDED
main.py CHANGED
@@ -1,6 +1,15 @@
1
  from fasthtml.common import *
2
  from fasthtml.components import *
3
- from fasthtml.components import D_title, D_article, D_front_matter, D_contents, D_byline
 
 
 
 
 
 
 
 
 
4
  from plotly import graph_objects as go
5
  from fh_plotly import plotly2fasthtml
6
  import pandas as pd
@@ -11,6 +20,7 @@ import curated
11
  import web
12
  import common
13
  import results
 
14
 
15
 
16
  app, rt = fast_app(
@@ -28,10 +38,46 @@ app, rt = fast_app(
28
  )
29
 
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  @app.get("/")
32
  def main():
33
  return Div(
34
- D_front_matter(),
35
  D_title(
36
  H1(
37
  "TxT360: the most comprehensive, highest quality, and production ready pretraining dataset",
@@ -44,6 +90,7 @@ def main():
44
  cls="main-plot-container l-page",
45
  ),
46
  ),
 
47
  D_article(
48
  D_contents(
49
  Nav(
@@ -120,148 +167,49 @@ def main():
120
  ),
121
  intro(),
122
  ),
 
 
123
  )
124
 
125
- intro_text = P("Pretraining performant large language models (LLMs) requires trillions of tokens of high quality data. Many prior work, including our previous pretraining projects ",
126
- A("Amber-7B", href = "https://huggingface.co/LLM360/Amber"),
127
- ", ",
128
- A("Crystal-7B", href = "https://huggingface.co/LLM360/CrystalCoder"),
129
- ", ",
130
- A("K2-65B", href = "https://huggingface.co/LLM360/K2"),
131
- " have demonstrated how data curation is a ‘make-or-break’ decision for model quality and capability.",)
132
 
133
- intro_list = P("We present TxT360, the Trillion eXtracted Text corpus, a 5.7T token dataset for pretraining projects that:")
134
-
135
- intro_list1 = Ol(
136
- Li("Curates commonly used pretraining datasets, including all CommonCrawl", style = "margin-bottom: 5px"),
137
- Li("Employs carefully selected filters designed for each data source", style = "margin-bottom: 5px"),
138
- Li("Provides only unique data elements via globally deduplicated across all datasets", style = "margin-bottom: 5px"),
139
- Li("Retains all deduplication metadata for custom upweighting", style = "margin-bottom: 5px"),
140
- Li("Is Production ready! Download here [link to HF repo]", style = "margin-bottom: 5px")
141
  )
142
 
143
- previous_intro = P("""We are excited to introduce TxT360, a
144
- large-scale, comprehensive, and fully transparent
145
- dataset designed for Large Language Model (LLM)
146
- pre-training. TxT360 is engineered to strike a
147
- balance between the quantity and quality of
148
- pre-training data, pushing the limit on both
149
- fronts. This comprehensive dataset encompasses both
150
- expansive web-based data and highly curated data
151
- sources, making it one of the most robust LLM
152
- pre-training corpora available today. Our web data
153
- component includes 99 snapshots from Common Crawl,
154
- amassing 5.7 trillion tokens and occupying 11 TB of
155
- disk space in jsonl.gz format. On the curated side,
156
- TxT360 integrates one of the most extensive
157
- collections of high-quality sources across multiple
158
- domains, ensuring diverse and rich content referred
159
- to as curated sources, 14 sources across 10
160
- domains. To maintain the highest quality, we
161
- meticulously pre-processed the web data to filter
162
- out low-quality content and conducted thorough
163
- reviews of the curated sources. This process not
164
- only unified their formats but also identified and
165
- rectified any anomalies. Not only do we 100%
166
- open-source our processing scripts, but we also
167
- release the details of our data reviews, revealing
168
- the decision-making processes behind data selection
169
- and quality assurance. This level of transparency
170
- allows researchers and practitioners to fully
171
- understand the dataset’s composition and make
172
- informed decisions when using TxT360 for training.
173
- Additionally, TxT360 includes detailed
174
- documentation and analysis of the data, covering
175
- distribution statistics, domain coverage, and
176
- processing pipeline, which helps users navigate and
177
- utilize the dataset effectively. Overall, TxT360
178
- represents a significant step forward in the
179
- availability and transparency of large-scale
180
- training data for language models, setting a new
181
- standard for dataset quality and openness.""")
182
 
183
- previous_background = P(
184
- """ The quality and size of a pre-training dataset
185
- play a crucial role in the performance of large
186
- language models (LLMs). The community has
187
- introduced a variety of datasets for this purpose,
188
- including purely web-based datasets like RefinedWeb
189
- [1], RedPajama-Data-V2 [2], DCLM [3], and
190
- FineWeb [4], as well as comprehensive datasets
191
- derived from multiple highly-curated data sources
192
- such as The Pile [5], RedPajama-Data-V1 [6], and
193
- Dolma [7] . It is commonly known that web-based
194
- datasets provide a vast quantity of data, while
195
- highly-curated multi-source datasets consistently
196
- deliver high quality and diversity, both critical
197
- for effective LLM pre-training. However, despite
198
- the advancements in both types of data, each type
199
- of dataset has its limitations. For instance, the
200
- processing scripts for the web dataset, RefinedWeb,
201
- known for its high quality, are not public, and
202
- only about 10% of the entire dataset has been
203
- disclosed. Conversely, the web component of
204
- existing highly-curated multi-source datasets is
205
- relatively small compared to purely web-based
206
- datasets, limiting their coverage and diversity
207
- compared to the scale of information from the
208
- internet. By integrating the extensive reach of
209
- web data with the exceptional quality of curated
210
- sources, TxT360 is crafted to meet and surpass the
211
- rigorous standards required for state-of-the-art
212
- LLM pre-training. """
213
- ),
214
 
215
- previous_content = P("""The performance of a large language model (LLM)
216
- depends heavily on the quality and size of its
217
- pretraining dataset. However, the pretraining
218
- datasets for state-of-the-art open LLMs like Llama
219
- 3 and Mixtral are not publicly available and very
220
- little is known about how they were created.
221
- Reading time: 45 min. For the best reading
222
- experience, we recommend not using a mobile phone.
223
- Recently, we released 🍷 FineWeb, a new,
224
- large-scale (15-trillion tokens, 44TB disk space)
225
- dataset for LLM pretraining. FineWeb is derived
226
- from 96 CommonCrawl snapshots and produces
227
- better-performing LLMs than other open pretraining
228
- datasets. To bring more clarity in machine learning
229
- and advance the open understanding of how to train
230
- good quality large language models, we carefully
231
- documented and ablated all of the design choices
232
- used in FineWeb, including in-depth investigations
233
- of deduplication and filtering strategies. The
234
- present long form report is a deep dive in how to
235
- create a large and high-quality web-scale dataset
236
- for LLM pretraining. The dataset itself, 🍷
237
- FineWeb, is available here. We are extremely
238
- thankful to the whole distill.pub team (Christopher
239
- Olah, Shan Carter, Ludwig Schubert in particular)
240
- for creating the template on which we based this
241
- blog post. Thanks also for inspiring us with
242
- exquisitely crafted articles and blog posts. In
243
- this report we also introduce 📚 FineWeb-Edu, a
244
- subset of FineWeb constructed using scalable
245
- automated high-quality annotations for educational
246
- value, and which outperforms all openly accessible
247
- web-datasets on a number of educational benchmarks
248
- such as MMLU, ARC, and OpenBookQA. 📚 FineWeb-Edu
249
- is available in two sizes/filtering-level: 1.3
250
- trillion (very high educational content) and 5.4
251
- trillion (high educational content) tokens (all
252
- tokens are measured with GPT2 tokenizer). You can
253
- download it here. Both datasets are released under
254
- the permissive ODC-By 1.0 license TLDR: This blog
255
- covers a discussion on processing and evaluating
256
- data quality at scale, the 🍷 FineWeb recipe
257
- (listing and explaining all of our design choices),
258
- and the process followed to create its 📚
259
- FineWeb-Edu subset."""),
260
 
261
- previous_conclusion = P("""This is the conclusion section where we
262
- summarize the key points discussed in the blog post
263
- and provide final thoughts."""),
264
-
265
  @app.get("/intro")
266
  def intro():
267
  return Div(
@@ -274,26 +222,43 @@ def intro():
274
  ),
275
  Section(
276
  H3("Global Deduplication"),
277
- P("TxT360 curated a wide range of datasets, including a whopping 99 Common Crawl Dumps and a list of high quality datasets: StackExchange, Wikipedia, Arxiv, USPTO, DM Math, HackerNews, Ubuntu IRC, Europarl, FreeLaw, PG19, S2ORC, PhilPapers, PubMed Abstracts, and PubMed Central. For the first time in a released dataset, we locally and globally deduplicated the data across each dataset creating the highest quality data available."),
 
 
278
  id="section2",
279
  ),
280
  Section(
281
  H3("Controllable Upweighting for Flexible Data Sample Weight Control"),
282
- P("In large-scale corpora like CommonCrawl, text duplication is a frequent occurrence. Duplication can be considered as a natural upsampling of some data points. Recent studies have highlighted the potential drawbacks of oversampling specific data points, which can negatively impact pretraining performance [2205.10487]. However, when samples are repeated appropriately, the performance can actually improve [2306.01116, 2305.16264, 2406.11794, FineWeb]. Despite this, there is currently no widely accepted best practice for data sampling, and it’s unlikely that a one-size-fits-all approach will emerge given the scale of these datasets. Previous work either leaves the deduplication process to the user (as seen in RedPajama V2 and DCLM-Pool) or provides a corpus that has been downsampled in a specific manner (such as in FineWeb and RefinedWeb)."),
283
- P("Given the high cost of deduplication, TxT360 offers a complete deduplication across all datasets (so you don’t have to). Additionally, TxT360 maintains detailed metadata for each sample, including the frequency and location of duplicates. This metadata gives pretrainers the flexibility to adjust the weight of samples as needed. In principle, one can recover the original dataset distribution (footnote: this approach also means a smaller size on disk). We will demonstrate a simple upsampling strategy that results in an effective pretraining dataset. "),
 
 
 
 
 
 
 
 
284
  id="section3",
285
  ),
286
  Section(
287
  H3("Full and Openly Documented Production Ready Pretraining Corpus"),
288
- P("We cover every aspect of the decisions made to produce the dataset, including document selection, filtering, quality assurance, deduplication, standardization and PII. Our reasoning is thoroughly explained, ensuring transparency and replicability. "),
 
 
289
  P("Our code is open sourced here[link to github]."),
290
- P("The dataset is ready for immediate download directly from Hugging Face [link]."),
291
- P("In the remainder of this blog post, we will walk you through the entire process and the rationale behind each decision. Enjoy!"),
 
 
 
 
292
  id="section4",
293
  ),
294
  id="inner-text",
295
  )
296
 
 
297
  rt("/overview")(overview.overview)
298
  rt("/curated")(curated.curated)
299
  rt("/curated/{target}")(curated.update)
 
1
  from fasthtml.common import *
2
  from fasthtml.components import *
3
+ from fasthtml.components import (
4
+ D_title,
5
+ D_article,
6
+ D_front_matter,
7
+ D_contents,
8
+ D_byline,
9
+ D_bibliography,
10
+ D_appendix,
11
+ D_cite,
12
+ )
13
  from plotly import graph_objects as go
14
  from fh_plotly import plotly2fasthtml
15
  import pandas as pd
 
20
  import web
21
  import common
22
  import results
23
+ from pybtex.database import parse_file
24
 
25
 
26
  app, rt = fast_app(
 
38
  )
39
 
40
 
41
+ front_matter = """
42
+ <d-front-matter>
43
+ <script id='distill-front-matter' type="text/json">{
44
+ "title": "",
45
+ "description": "",
46
+ "published": "",
47
+ "affiliation": {},
48
+ "authors": [
49
+ {
50
+ "author":"",
51
+ "authorURL":""
52
+ }
53
+ ],
54
+ "katex": {
55
+ "delimiters": [
56
+ {"left": "$$", "right": "$$", "display": false}
57
+ ]
58
+ }
59
+ }
60
+ </script>
61
+ </d-front-matter>
62
+ """
63
+
64
+
65
+ def read_bibs():
66
+ bib_data = parse_file("bibliography.bib")
67
+ cits = []
68
+ for key in bib_data.entries.keys():
69
+ cits.append(D_cite(bibtex_key=key))
70
+ return cits
71
+
72
+
73
+ @app.get("/bibliography.bib")
74
+ def get():
75
+ return FileResponse("bibliography.bib")
76
+
77
+
78
  @app.get("/")
79
  def main():
80
  return Div(
 
81
  D_title(
82
  H1(
83
  "TxT360: the most comprehensive, highest quality, and production ready pretraining dataset",
 
90
  cls="main-plot-container l-page",
91
  ),
92
  ),
93
+ Div(D_byline(), NotStr(front_matter), style="display: none;"),
94
  D_article(
95
  D_contents(
96
  Nav(
 
167
  ),
168
  intro(),
169
  ),
170
+ D_appendix(D_bibliography(src="bibliography.bib")),
171
+ Div(*read_bibs(), style="display: none;"),
172
  )
173
 
 
 
 
 
 
 
 
174
 
175
+ intro_text = P(
176
+ "Pretraining performant large language models (LLMs) requires trillions of tokens of high quality data. Many prior work, including our previous pretraining projects ",
177
+ A("Amber-7B", href="https://huggingface.co/LLM360/Amber"),
178
+ ", ",
179
+ A("Crystal-7B", href="https://huggingface.co/LLM360/CrystalCoder"),
180
+ ", ",
181
+ A("K2-65B", href="https://huggingface.co/LLM360/K2"),
182
+ " have demonstrated how data curation is a ‘make-or-break’ decision for model quality and capability.",
183
  )
184
 
185
+ intro_list = P(
186
+ "We present TxT360, the Trillion eXtracted Text corpus, a 5.7T token dataset for pretraining projects that:"
187
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
+ intro_list1 = Ol(
190
+ Li(
191
+ "Curates commonly used pretraining datasets, including all CommonCrawl",
192
+ style="margin-bottom: 5px",
193
+ ),
194
+ Li(
195
+ "Employs carefully selected filters designed for each data source",
196
+ style="margin-bottom: 5px",
197
+ ),
198
+ Li(
199
+ "Provides only unique data elements via globally deduplicated across all datasets",
200
+ style="margin-bottom: 5px",
201
+ ),
202
+ Li(
203
+ "Retains all deduplication metadata for custom upweighting",
204
+ style="margin-bottom: 5px",
205
+ ),
206
+ Li(
207
+ "Is Production ready! Download here [link to HF repo]",
208
+ style="margin-bottom: 5px",
209
+ ),
210
+ )
 
 
 
 
 
 
 
 
 
211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
 
 
 
 
 
213
  @app.get("/intro")
214
  def intro():
215
  return Div(
 
222
  ),
223
  Section(
224
  H3("Global Deduplication"),
225
+ P(
226
+ "TxT360 curated a wide range of datasets, including a whopping 99 Common Crawl Dumps and a list of high quality datasets: StackExchange, Wikipedia, Arxiv, USPTO, DM Math, HackerNews, Ubuntu IRC, Europarl, FreeLaw, PG19, S2ORC, PhilPapers, PubMed Abstracts, and PubMed Central. For the first time in a released dataset, we locally and globally deduplicated the data across each dataset creating the highest quality data available."
227
+ ),
228
  id="section2",
229
  ),
230
  Section(
231
  H3("Controllable Upweighting for Flexible Data Sample Weight Control"),
232
+ P(
233
+ "In large-scale corpora like CommonCrawl, text duplication is a frequent occurrence. Duplication can be considered as a natural upsampling of some data points. Recent studies have highlighted the potential drawbacks of oversampling specific data points, which can negatively impact pretraining performance [2205.10487]. However, when samples are repeated appropriately, the performance can actually improve [2306.01116, 2305.16264, 2406.11794, FineWeb]. Despite this, there is currently no widely accepted best practice for data sampling, and it’s unlikely that a one-size-fits-all approach will emerge given the scale of these datasets. Previous work either leaves the deduplication process to the user (as seen in RedPajama V2 and DCLM-Pool) or provides a corpus that has been downsampled in a specific manner (such as in FineWeb",
234
+ D_cite(bibtex_key="fineweb"),
235
+ "and RefinedWeb",
236
+ D_cite(bibtex_key="refinedweb"),
237
+ ").",
238
+ ),
239
+ P(
240
+ "Given the high cost of deduplication, TxT360 offers a complete deduplication across all datasets (so you don’t have to). Additionally, TxT360 maintains detailed metadata for each sample, including the frequency and location of duplicates. This metadata gives pretrainers the flexibility to adjust the weight of samples as needed. In principle, one can recover the original dataset distribution (footnote: this approach also means a smaller size on disk). We will demonstrate a simple upsampling strategy that results in an effective pretraining dataset. "
241
+ ),
242
  id="section3",
243
  ),
244
  Section(
245
  H3("Full and Openly Documented Production Ready Pretraining Corpus"),
246
+ P(
247
+ "We cover every aspect of the decisions made to produce the dataset, including document selection, filtering, quality assurance, deduplication, standardization and PII. Our reasoning is thoroughly explained, ensuring transparency and replicability. "
248
+ ),
249
  P("Our code is open sourced here[link to github]."),
250
+ P(
251
+ "The dataset is ready for immediate download directly from Hugging Face [link]."
252
+ ),
253
+ P(
254
+ "In the remainder of this blog post, we will walk you through the entire process and the rationale behind each decision. Enjoy!"
255
+ ),
256
  id="section4",
257
  ),
258
  id="inner-text",
259
  )
260
 
261
+
262
  rt("/overview")(overview.overview)
263
  rt("/curated")(curated.curated)
264
  rt("/curated/{target}")(curated.update)
requirements.txt CHANGED
@@ -6,4 +6,4 @@ pandas
6
  Jinja2
7
  rich
8
  jsonlines
9
- bibtexparser
 
6
  Jinja2
7
  rich
8
  jsonlines
9
+ pybtex