from dotenv import find_dotenv, load_dotenv from transformers import pipeline from langchain import PromptTemplate, LLMChain, OpenAI import requests import os import streamlit as st load_dotenv(find_dotenv()) HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") #module1: image to text def imgtotxt(url): img_to_txt = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base") text = img_to_txt(url)[0]["generated_text"] print(text) return text #module2: llm def generate_story(scenario): template = """ You are a story teller; You can generate a short story based on a simple narrative, the story should be no more than 50 words; CONTEXT: {scenario} STORY: """ prompt = PromptTemplate(template=template, input_variables=["scenario"]) story_llm = LLMChain(llm=OpenAI(model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True) story = story_llm.predict(scenario=scenario) print(story) return story #module3: text to speech def texttospeech(message): API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} payloads = { "inputs": message } response = requests.post(API_URL, headers=headers, json=payloads) with open('audio.flac', 'wb') as file: file.write(response.content) def main(): st.set_page_config(page_title="Image to Audio Story", page_icon="🗣️") st.header("Turn Image into Audio Story") uploaded_file = st.file_uploader("Choose an Image...", type="jpg") if uploaded_file is not None: bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) scenario = imgtotxt(uploaded_file.name) story= generate_story(scenario) texttospeech(story) with st.expander("Scenario"): st.write(scenario) with st.expander("Story"): st.write(story) st.audio("audio.flac") if __name__ == '__main__': main()