Spaces:
Sleeping
Sleeping
KunalKharalkar
commited on
Commit
•
9e375c7
1
Parent(s):
c2f4eae
Upload 2 files
Browse files- app.py +72 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import find_dotenv, load_dotenv
|
2 |
+
from transformers import pipeline
|
3 |
+
from langchain import PromptTemplate, LLMChain, OpenAI
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
load_dotenv(find_dotenv())
|
9 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
10 |
+
|
11 |
+
#module1: image to text
|
12 |
+
def imgtotxt(url):
|
13 |
+
img_to_txt = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")
|
14 |
+
text = img_to_txt(url)[0]["generated_text"]
|
15 |
+
print(text)
|
16 |
+
return text
|
17 |
+
|
18 |
+
|
19 |
+
#module2: llm
|
20 |
+
def generate_story(scenario):
|
21 |
+
template = """
|
22 |
+
You are a story teller;
|
23 |
+
You can generate a short story based on a simple narrative, the story should be no more than 50 words;
|
24 |
+
|
25 |
+
CONTEXT: {scenario}
|
26 |
+
STORY:
|
27 |
+
"""
|
28 |
+
|
29 |
+
prompt = PromptTemplate(template=template, input_variables=["scenario"])
|
30 |
+
|
31 |
+
story_llm = LLMChain(llm=OpenAI(model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True)
|
32 |
+
story = story_llm.predict(scenario=scenario)
|
33 |
+
|
34 |
+
print(story)
|
35 |
+
return story
|
36 |
+
|
37 |
+
|
38 |
+
#module3: text to speech
|
39 |
+
def texttospeech(message):
|
40 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
41 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
42 |
+
payloads = {
|
43 |
+
"inputs": message
|
44 |
+
}
|
45 |
+
|
46 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
47 |
+
with open('audio.flac', 'wb') as file:
|
48 |
+
file.write(response.content)
|
49 |
+
|
50 |
+
def main():
|
51 |
+
st.set_page_config(page_title="Image to Audio Story", page_icon="🗣️")
|
52 |
+
st.header("Turn Image into Audio Story")
|
53 |
+
uploaded_file = st.file_uploader("Choose an Image...", type="jpg")
|
54 |
+
|
55 |
+
if uploaded_file is not None:
|
56 |
+
bytes_data = uploaded_file.getvalue()
|
57 |
+
with open(uploaded_file.name, "wb") as file:
|
58 |
+
file.write(bytes_data)
|
59 |
+
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
|
60 |
+
scenario = imgtotxt(uploaded_file.name)
|
61 |
+
story= generate_story(scenario)
|
62 |
+
texttospeech(story)
|
63 |
+
|
64 |
+
with st.expander("Scenario"):
|
65 |
+
st.write(scenario)
|
66 |
+
with st.expander("Story"):
|
67 |
+
st.write(story)
|
68 |
+
|
69 |
+
st.audio("audio.flac")
|
70 |
+
|
71 |
+
if __name__ == '__main__':
|
72 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-dotenv
|
2 |
+
transformers
|
3 |
+
langchain
|
4 |
+
requests
|
5 |
+
streamlit
|
6 |
+
torch
|
7 |
+
openai
|