Spaces:
Running
Running
import json | |
import logging | |
import mimetypes | |
import os | |
import shutil | |
import uuid | |
from datetime import datetime | |
from pathlib import Path | |
from typing import Iterator, List, Optional, Sequence, Union | |
from fastapi import ( | |
Depends, | |
FastAPI, | |
File, | |
Form, | |
HTTPException, | |
UploadFile, | |
Request, | |
status, | |
APIRouter, | |
) | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
import tiktoken | |
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter | |
from langchain_core.documents import Document | |
from open_webui.models.files import FileModel, Files | |
from open_webui.models.knowledge import Knowledges | |
from open_webui.storage.provider import Storage | |
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT | |
# Document loaders | |
from open_webui.retrieval.loaders.main import Loader | |
from open_webui.retrieval.loaders.youtube import YoutubeLoader | |
# Web search engines | |
from open_webui.retrieval.web.main import SearchResult | |
from open_webui.retrieval.web.utils import get_web_loader | |
from open_webui.retrieval.web.brave import search_brave | |
from open_webui.retrieval.web.kagi import search_kagi | |
from open_webui.retrieval.web.mojeek import search_mojeek | |
from open_webui.retrieval.web.duckduckgo import search_duckduckgo | |
from open_webui.retrieval.web.google_pse import search_google_pse | |
from open_webui.retrieval.web.jina_search import search_jina | |
from open_webui.retrieval.web.searchapi import search_searchapi | |
from open_webui.retrieval.web.searxng import search_searxng | |
from open_webui.retrieval.web.serper import search_serper | |
from open_webui.retrieval.web.serply import search_serply | |
from open_webui.retrieval.web.serpstack import search_serpstack | |
from open_webui.retrieval.web.tavily import search_tavily | |
from open_webui.retrieval.web.bing import search_bing | |
from open_webui.retrieval.utils import ( | |
get_embedding_function, | |
get_model_path, | |
query_collection, | |
query_collection_with_hybrid_search, | |
query_doc, | |
query_doc_with_hybrid_search, | |
) | |
from open_webui.utils.misc import ( | |
calculate_sha256_string, | |
) | |
from open_webui.utils.auth import get_admin_user, get_verified_user | |
from open_webui.config import ( | |
ENV, | |
RAG_EMBEDDING_MODEL_AUTO_UPDATE, | |
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | |
RAG_RERANKING_MODEL_AUTO_UPDATE, | |
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | |
UPLOAD_DIR, | |
DEFAULT_LOCALE, | |
) | |
from open_webui.env import ( | |
SRC_LOG_LEVELS, | |
DEVICE_TYPE, | |
DOCKER, | |
) | |
from open_webui.constants import ERROR_MESSAGES | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
########################################## | |
# | |
# Utility functions | |
# | |
########################################## | |
def get_ef( | |
engine: str, | |
embedding_model: str, | |
auto_update: bool = False, | |
): | |
ef = None | |
if embedding_model and engine == "": | |
from sentence_transformers import SentenceTransformer | |
try: | |
ef = SentenceTransformer( | |
get_model_path(embedding_model, auto_update), | |
device=DEVICE_TYPE, | |
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | |
) | |
except Exception as e: | |
log.debug(f"Error loading SentenceTransformer: {e}") | |
return ef | |
def get_rf( | |
reranking_model: str, | |
auto_update: bool = False, | |
): | |
rf = None | |
if reranking_model: | |
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]): | |
try: | |
from open_webui.retrieval.models.colbert import ColBERT | |
rf = ColBERT( | |
get_model_path(reranking_model, auto_update), | |
env="docker" if DOCKER else None, | |
) | |
except Exception as e: | |
log.error(f"ColBERT: {e}") | |
raise Exception(ERROR_MESSAGES.DEFAULT(e)) | |
else: | |
import sentence_transformers | |
try: | |
rf = sentence_transformers.CrossEncoder( | |
get_model_path(reranking_model, auto_update), | |
device=DEVICE_TYPE, | |
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | |
) | |
except: | |
log.error("CrossEncoder error") | |
raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error")) | |
return rf | |
########################################## | |
# | |
# API routes | |
# | |
########################################## | |
router = APIRouter() | |
class CollectionNameForm(BaseModel): | |
collection_name: Optional[str] = None | |
class ProcessUrlForm(CollectionNameForm): | |
url: str | |
class SearchForm(CollectionNameForm): | |
query: str | |
async def get_status(request: Request): | |
return { | |
"status": True, | |
"chunk_size": request.app.state.config.CHUNK_SIZE, | |
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP, | |
"template": request.app.state.config.RAG_TEMPLATE, | |
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, | |
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL, | |
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, | |
} | |
async def get_embedding_config(request: Request, user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, | |
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, | |
"openai_config": { | |
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL, | |
"key": request.app.state.config.RAG_OPENAI_API_KEY, | |
}, | |
"ollama_config": { | |
"url": request.app.state.config.RAG_OLLAMA_BASE_URL, | |
"key": request.app.state.config.RAG_OLLAMA_API_KEY, | |
}, | |
} | |
async def get_reraanking_config(request: Request, user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL, | |
} | |
class OpenAIConfigForm(BaseModel): | |
url: str | |
key: str | |
class OllamaConfigForm(BaseModel): | |
url: str | |
key: str | |
class EmbeddingModelUpdateForm(BaseModel): | |
openai_config: Optional[OpenAIConfigForm] = None | |
ollama_config: Optional[OllamaConfigForm] = None | |
embedding_engine: str | |
embedding_model: str | |
embedding_batch_size: Optional[int] = 1 | |
async def update_embedding_config( | |
request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) | |
): | |
log.info( | |
f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" | |
) | |
try: | |
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine | |
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model | |
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: | |
if form_data.openai_config is not None: | |
request.app.state.config.RAG_OPENAI_API_BASE_URL = ( | |
form_data.openai_config.url | |
) | |
request.app.state.config.RAG_OPENAI_API_KEY = ( | |
form_data.openai_config.key | |
) | |
if form_data.ollama_config is not None: | |
request.app.state.config.RAG_OLLAMA_BASE_URL = ( | |
form_data.ollama_config.url | |
) | |
request.app.state.config.RAG_OLLAMA_API_KEY = ( | |
form_data.ollama_config.key | |
) | |
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = ( | |
form_data.embedding_batch_size | |
) | |
request.app.state.ef = get_ef( | |
request.app.state.config.RAG_EMBEDDING_ENGINE, | |
request.app.state.config.RAG_EMBEDDING_MODEL, | |
) | |
request.app.state.EMBEDDING_FUNCTION = get_embedding_function( | |
request.app.state.config.RAG_EMBEDDING_ENGINE, | |
request.app.state.config.RAG_EMBEDDING_MODEL, | |
request.app.state.ef, | |
( | |
request.app.state.config.RAG_OPENAI_API_BASE_URL | |
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" | |
else request.app.state.config.RAG_OLLAMA_BASE_URL | |
), | |
( | |
request.app.state.config.RAG_OPENAI_API_KEY | |
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" | |
else request.app.state.config.RAG_OLLAMA_API_KEY | |
), | |
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, | |
) | |
return { | |
"status": True, | |
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, | |
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, | |
"openai_config": { | |
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL, | |
"key": request.app.state.config.RAG_OPENAI_API_KEY, | |
}, | |
"ollama_config": { | |
"url": request.app.state.config.RAG_OLLAMA_BASE_URL, | |
"key": request.app.state.config.RAG_OLLAMA_API_KEY, | |
}, | |
} | |
except Exception as e: | |
log.exception(f"Problem updating embedding model: {e}") | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class RerankingModelUpdateForm(BaseModel): | |
reranking_model: str | |
async def update_reranking_config( | |
request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) | |
): | |
log.info( | |
f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" | |
) | |
try: | |
request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model | |
try: | |
request.app.state.rf = get_rf( | |
request.app.state.config.RAG_RERANKING_MODEL, | |
True, | |
) | |
except Exception as e: | |
log.error(f"Error loading reranking model: {e}") | |
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False | |
return { | |
"status": True, | |
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL, | |
} | |
except Exception as e: | |
log.exception(f"Problem updating reranking model: {e}") | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
async def get_rag_config(request: Request, user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES, | |
"enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION, | |
"content_extraction": { | |
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE, | |
"tika_server_url": request.app.state.config.TIKA_SERVER_URL, | |
}, | |
"chunk": { | |
"text_splitter": request.app.state.config.TEXT_SPLITTER, | |
"chunk_size": request.app.state.config.CHUNK_SIZE, | |
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP, | |
}, | |
"file": { | |
"max_size": request.app.state.config.FILE_MAX_SIZE, | |
"max_count": request.app.state.config.FILE_MAX_COUNT, | |
}, | |
"youtube": { | |
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION, | |
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL, | |
}, | |
"web": { | |
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
"search": { | |
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH, | |
"drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION, | |
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE, | |
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL, | |
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY, | |
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID, | |
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY, | |
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY, | |
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY, | |
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY, | |
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS, | |
"serper_api_key": request.app.state.config.SERPER_API_KEY, | |
"serply_api_key": request.app.state.config.SERPLY_API_KEY, | |
"tavily_api_key": request.app.state.config.TAVILY_API_KEY, | |
"searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY, | |
"seaarchapi_engine": request.app.state.config.SEARCHAPI_ENGINE, | |
"jina_api_key": request.app.state.config.JINA_API_KEY, | |
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT, | |
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, | |
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, | |
}, | |
}, | |
} | |
class FileConfig(BaseModel): | |
max_size: Optional[int] = None | |
max_count: Optional[int] = None | |
class ContentExtractionConfig(BaseModel): | |
engine: str = "" | |
tika_server_url: Optional[str] = None | |
class ChunkParamUpdateForm(BaseModel): | |
text_splitter: Optional[str] = None | |
chunk_size: int | |
chunk_overlap: int | |
class YoutubeLoaderConfig(BaseModel): | |
language: list[str] | |
translation: Optional[str] = None | |
proxy_url: str = "" | |
class WebSearchConfig(BaseModel): | |
enabled: bool | |
engine: Optional[str] = None | |
searxng_query_url: Optional[str] = None | |
google_pse_api_key: Optional[str] = None | |
google_pse_engine_id: Optional[str] = None | |
brave_search_api_key: Optional[str] = None | |
kagi_search_api_key: Optional[str] = None | |
mojeek_search_api_key: Optional[str] = None | |
serpstack_api_key: Optional[str] = None | |
serpstack_https: Optional[bool] = None | |
serper_api_key: Optional[str] = None | |
serply_api_key: Optional[str] = None | |
tavily_api_key: Optional[str] = None | |
searchapi_api_key: Optional[str] = None | |
searchapi_engine: Optional[str] = None | |
jina_api_key: Optional[str] = None | |
bing_search_v7_endpoint: Optional[str] = None | |
bing_search_v7_subscription_key: Optional[str] = None | |
result_count: Optional[int] = None | |
concurrent_requests: Optional[int] = None | |
class WebConfig(BaseModel): | |
search: WebSearchConfig | |
web_loader_ssl_verification: Optional[bool] = None | |
class ConfigUpdateForm(BaseModel): | |
pdf_extract_images: Optional[bool] = None | |
enable_google_drive_integration: Optional[bool] = None | |
file: Optional[FileConfig] = None | |
content_extraction: Optional[ContentExtractionConfig] = None | |
chunk: Optional[ChunkParamUpdateForm] = None | |
youtube: Optional[YoutubeLoaderConfig] = None | |
web: Optional[WebConfig] = None | |
async def update_rag_config( | |
request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user) | |
): | |
request.app.state.config.PDF_EXTRACT_IMAGES = ( | |
form_data.pdf_extract_images | |
if form_data.pdf_extract_images is not None | |
else request.app.state.config.PDF_EXTRACT_IMAGES | |
) | |
request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = ( | |
form_data.enable_google_drive_integration | |
if form_data.enable_google_drive_integration is not None | |
else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION | |
) | |
if form_data.file is not None: | |
request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size | |
request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count | |
if form_data.content_extraction is not None: | |
log.info(f"Updating text settings: {form_data.content_extraction}") | |
request.app.state.config.CONTENT_EXTRACTION_ENGINE = ( | |
form_data.content_extraction.engine | |
) | |
request.app.state.config.TIKA_SERVER_URL = ( | |
form_data.content_extraction.tika_server_url | |
) | |
if form_data.chunk is not None: | |
request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter | |
request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size | |
request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap | |
if form_data.youtube is not None: | |
request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language | |
request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url | |
request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation | |
if form_data.web is not None: | |
request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( | |
# Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False | |
form_data.web.web_loader_ssl_verification | |
) | |
request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled | |
request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine | |
request.app.state.config.SEARXNG_QUERY_URL = ( | |
form_data.web.search.searxng_query_url | |
) | |
request.app.state.config.GOOGLE_PSE_API_KEY = ( | |
form_data.web.search.google_pse_api_key | |
) | |
request.app.state.config.GOOGLE_PSE_ENGINE_ID = ( | |
form_data.web.search.google_pse_engine_id | |
) | |
request.app.state.config.BRAVE_SEARCH_API_KEY = ( | |
form_data.web.search.brave_search_api_key | |
) | |
request.app.state.config.KAGI_SEARCH_API_KEY = ( | |
form_data.web.search.kagi_search_api_key | |
) | |
request.app.state.config.MOJEEK_SEARCH_API_KEY = ( | |
form_data.web.search.mojeek_search_api_key | |
) | |
request.app.state.config.SERPSTACK_API_KEY = ( | |
form_data.web.search.serpstack_api_key | |
) | |
request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https | |
request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key | |
request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key | |
request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key | |
request.app.state.config.SEARCHAPI_API_KEY = ( | |
form_data.web.search.searchapi_api_key | |
) | |
request.app.state.config.SEARCHAPI_ENGINE = ( | |
form_data.web.search.searchapi_engine | |
) | |
request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key | |
request.app.state.config.BING_SEARCH_V7_ENDPOINT = ( | |
form_data.web.search.bing_search_v7_endpoint | |
) | |
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = ( | |
form_data.web.search.bing_search_v7_subscription_key | |
) | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = ( | |
form_data.web.search.result_count | |
) | |
request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = ( | |
form_data.web.search.concurrent_requests | |
) | |
return { | |
"status": True, | |
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES, | |
"file": { | |
"max_size": request.app.state.config.FILE_MAX_SIZE, | |
"max_count": request.app.state.config.FILE_MAX_COUNT, | |
}, | |
"content_extraction": { | |
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE, | |
"tika_server_url": request.app.state.config.TIKA_SERVER_URL, | |
}, | |
"chunk": { | |
"text_splitter": request.app.state.config.TEXT_SPLITTER, | |
"chunk_size": request.app.state.config.CHUNK_SIZE, | |
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP, | |
}, | |
"youtube": { | |
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL, | |
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION, | |
}, | |
"web": { | |
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
"search": { | |
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH, | |
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE, | |
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL, | |
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY, | |
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID, | |
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY, | |
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY, | |
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY, | |
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY, | |
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS, | |
"serper_api_key": request.app.state.config.SERPER_API_KEY, | |
"serply_api_key": request.app.state.config.SERPLY_API_KEY, | |
"serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY, | |
"searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE, | |
"tavily_api_key": request.app.state.config.TAVILY_API_KEY, | |
"jina_api_key": request.app.state.config.JINA_API_KEY, | |
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT, | |
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, | |
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, | |
}, | |
}, | |
} | |
async def get_rag_template(request: Request, user=Depends(get_verified_user)): | |
return { | |
"status": True, | |
"template": request.app.state.config.RAG_TEMPLATE, | |
} | |
async def get_query_settings(request: Request, user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"template": request.app.state.config.RAG_TEMPLATE, | |
"k": request.app.state.config.TOP_K, | |
"r": request.app.state.config.RELEVANCE_THRESHOLD, | |
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
} | |
class QuerySettingsForm(BaseModel): | |
k: Optional[int] = None | |
r: Optional[float] = None | |
template: Optional[str] = None | |
hybrid: Optional[bool] = None | |
async def update_query_settings( | |
request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user) | |
): | |
request.app.state.config.RAG_TEMPLATE = form_data.template | |
request.app.state.config.TOP_K = form_data.k if form_data.k else 4 | |
request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 | |
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( | |
form_data.hybrid if form_data.hybrid else False | |
) | |
return { | |
"status": True, | |
"template": request.app.state.config.RAG_TEMPLATE, | |
"k": request.app.state.config.TOP_K, | |
"r": request.app.state.config.RELEVANCE_THRESHOLD, | |
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
} | |
#################################### | |
# | |
# Document process and retrieval | |
# | |
#################################### | |
def save_docs_to_vector_db( | |
request: Request, | |
docs, | |
collection_name, | |
metadata: Optional[dict] = None, | |
overwrite: bool = False, | |
split: bool = True, | |
add: bool = False, | |
) -> bool: | |
def _get_docs_info(docs: list[Document]) -> str: | |
docs_info = set() | |
# Trying to select relevant metadata identifying the document. | |
for doc in docs: | |
metadata = getattr(doc, "metadata", {}) | |
doc_name = metadata.get("name", "") | |
if not doc_name: | |
doc_name = metadata.get("title", "") | |
if not doc_name: | |
doc_name = metadata.get("source", "") | |
if doc_name: | |
docs_info.add(doc_name) | |
return ", ".join(docs_info) | |
log.info( | |
f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}" | |
) | |
# Check if entries with the same hash (metadata.hash) already exist | |
if metadata and "hash" in metadata: | |
result = VECTOR_DB_CLIENT.query( | |
collection_name=collection_name, | |
filter={"hash": metadata["hash"]}, | |
) | |
if result is not None: | |
existing_doc_ids = result.ids[0] | |
if existing_doc_ids: | |
log.info(f"Document with hash {metadata['hash']} already exists") | |
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT) | |
if split: | |
if request.app.state.config.TEXT_SPLITTER in ["", "character"]: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=request.app.state.config.CHUNK_SIZE, | |
chunk_overlap=request.app.state.config.CHUNK_OVERLAP, | |
add_start_index=True, | |
) | |
elif request.app.state.config.TEXT_SPLITTER == "token": | |
log.info( | |
f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}" | |
) | |
tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME)) | |
text_splitter = TokenTextSplitter( | |
encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME), | |
chunk_size=request.app.state.config.CHUNK_SIZE, | |
chunk_overlap=request.app.state.config.CHUNK_OVERLAP, | |
add_start_index=True, | |
) | |
else: | |
raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter")) | |
docs = text_splitter.split_documents(docs) | |
if len(docs) == 0: | |
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) | |
texts = [doc.page_content for doc in docs] | |
metadatas = [ | |
{ | |
**doc.metadata, | |
**(metadata if metadata else {}), | |
"embedding_config": json.dumps( | |
{ | |
"engine": request.app.state.config.RAG_EMBEDDING_ENGINE, | |
"model": request.app.state.config.RAG_EMBEDDING_MODEL, | |
} | |
), | |
} | |
for doc in docs | |
] | |
# ChromaDB does not like datetime formats | |
# for meta-data so convert them to string. | |
for metadata in metadatas: | |
for key, value in metadata.items(): | |
if isinstance(value, datetime): | |
metadata[key] = str(value) | |
try: | |
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name): | |
log.info(f"collection {collection_name} already exists") | |
if overwrite: | |
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name) | |
log.info(f"deleting existing collection {collection_name}") | |
elif add is False: | |
log.info( | |
f"collection {collection_name} already exists, overwrite is False and add is False" | |
) | |
return True | |
log.info(f"adding to collection {collection_name}") | |
embedding_function = get_embedding_function( | |
request.app.state.config.RAG_EMBEDDING_ENGINE, | |
request.app.state.config.RAG_EMBEDDING_MODEL, | |
request.app.state.ef, | |
( | |
request.app.state.config.RAG_OPENAI_API_BASE_URL | |
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" | |
else request.app.state.config.RAG_OLLAMA_BASE_URL | |
), | |
( | |
request.app.state.config.RAG_OPENAI_API_KEY | |
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" | |
else request.app.state.config.RAG_OLLAMA_API_KEY | |
), | |
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, | |
) | |
embeddings = embedding_function( | |
list(map(lambda x: x.replace("\n", " "), texts)) | |
) | |
items = [ | |
{ | |
"id": str(uuid.uuid4()), | |
"text": text, | |
"vector": embeddings[idx], | |
"metadata": metadatas[idx], | |
} | |
for idx, text in enumerate(texts) | |
] | |
VECTOR_DB_CLIENT.insert( | |
collection_name=collection_name, | |
items=items, | |
) | |
return True | |
except Exception as e: | |
log.exception(e) | |
raise e | |
class ProcessFileForm(BaseModel): | |
file_id: str | |
content: Optional[str] = None | |
collection_name: Optional[str] = None | |
def process_file( | |
request: Request, | |
form_data: ProcessFileForm, | |
user=Depends(get_verified_user), | |
): | |
try: | |
file = Files.get_file_by_id(form_data.file_id) | |
collection_name = form_data.collection_name | |
if collection_name is None: | |
collection_name = f"file-{file.id}" | |
if form_data.content: | |
# Update the content in the file | |
# Usage: /files/{file_id}/data/content/update | |
VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}") | |
docs = [ | |
Document( | |
page_content=form_data.content.replace("<br/>", "\n"), | |
metadata={ | |
**file.meta, | |
"name": file.filename, | |
"created_by": file.user_id, | |
"file_id": file.id, | |
"source": file.filename, | |
}, | |
) | |
] | |
text_content = form_data.content | |
elif form_data.collection_name: | |
# Check if the file has already been processed and save the content | |
# Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update | |
result = VECTOR_DB_CLIENT.query( | |
collection_name=f"file-{file.id}", filter={"file_id": file.id} | |
) | |
if result is not None and len(result.ids[0]) > 0: | |
docs = [ | |
Document( | |
page_content=result.documents[0][idx], | |
metadata=result.metadatas[0][idx], | |
) | |
for idx, id in enumerate(result.ids[0]) | |
] | |
else: | |
docs = [ | |
Document( | |
page_content=file.data.get("content", ""), | |
metadata={ | |
**file.meta, | |
"name": file.filename, | |
"created_by": file.user_id, | |
"file_id": file.id, | |
"source": file.filename, | |
}, | |
) | |
] | |
text_content = file.data.get("content", "") | |
else: | |
# Process the file and save the content | |
# Usage: /files/ | |
file_path = file.path | |
if file_path: | |
file_path = Storage.get_file(file_path) | |
loader = Loader( | |
engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE, | |
TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL, | |
PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES, | |
) | |
docs = loader.load( | |
file.filename, file.meta.get("content_type"), file_path | |
) | |
docs = [ | |
Document( | |
page_content=doc.page_content, | |
metadata={ | |
**doc.metadata, | |
"name": file.filename, | |
"created_by": file.user_id, | |
"file_id": file.id, | |
"source": file.filename, | |
}, | |
) | |
for doc in docs | |
] | |
else: | |
docs = [ | |
Document( | |
page_content=file.data.get("content", ""), | |
metadata={ | |
**file.meta, | |
"name": file.filename, | |
"created_by": file.user_id, | |
"file_id": file.id, | |
"source": file.filename, | |
}, | |
) | |
] | |
text_content = " ".join([doc.page_content for doc in docs]) | |
log.debug(f"text_content: {text_content}") | |
Files.update_file_data_by_id( | |
file.id, | |
{"content": text_content}, | |
) | |
hash = calculate_sha256_string(text_content) | |
Files.update_file_hash_by_id(file.id, hash) | |
try: | |
result = save_docs_to_vector_db( | |
request, | |
docs=docs, | |
collection_name=collection_name, | |
metadata={ | |
"file_id": file.id, | |
"name": file.filename, | |
"hash": hash, | |
}, | |
add=(True if form_data.collection_name else False), | |
) | |
if result: | |
Files.update_file_metadata_by_id( | |
file.id, | |
{ | |
"collection_name": collection_name, | |
}, | |
) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": file.filename, | |
"content": text_content, | |
} | |
except Exception as e: | |
raise e | |
except Exception as e: | |
log.exception(e) | |
if "No pandoc was found" in str(e): | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, | |
) | |
else: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=str(e), | |
) | |
class ProcessTextForm(BaseModel): | |
name: str | |
content: str | |
collection_name: Optional[str] = None | |
def process_text( | |
request: Request, | |
form_data: ProcessTextForm, | |
user=Depends(get_verified_user), | |
): | |
collection_name = form_data.collection_name | |
if collection_name is None: | |
collection_name = calculate_sha256_string(form_data.content) | |
docs = [ | |
Document( | |
page_content=form_data.content, | |
metadata={"name": form_data.name, "created_by": user.id}, | |
) | |
] | |
text_content = form_data.content | |
log.debug(f"text_content: {text_content}") | |
result = save_docs_to_vector_db(request, docs, collection_name) | |
if result: | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"content": text_content, | |
} | |
else: | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(), | |
) | |
def process_youtube_video( | |
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user) | |
): | |
try: | |
collection_name = form_data.collection_name | |
if not collection_name: | |
collection_name = calculate_sha256_string(form_data.url)[:63] | |
loader = YoutubeLoader( | |
form_data.url, | |
language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL, | |
) | |
docs = loader.load() | |
content = " ".join([doc.page_content for doc in docs]) | |
log.debug(f"text_content: {content}") | |
save_docs_to_vector_db(request, docs, collection_name, overwrite=True) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": form_data.url, | |
"file": { | |
"data": { | |
"content": content, | |
}, | |
"meta": { | |
"name": form_data.url, | |
}, | |
}, | |
} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def process_web( | |
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user) | |
): | |
try: | |
collection_name = form_data.collection_name | |
if not collection_name: | |
collection_name = calculate_sha256_string(form_data.url)[:63] | |
loader = get_web_loader( | |
form_data.url, | |
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, | |
) | |
docs = loader.load() | |
content = " ".join([doc.page_content for doc in docs]) | |
log.debug(f"text_content: {content}") | |
save_docs_to_vector_db(request, docs, collection_name, overwrite=True) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": form_data.url, | |
"file": { | |
"data": { | |
"content": content, | |
}, | |
"meta": { | |
"name": form_data.url, | |
}, | |
}, | |
} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def search_web(request: Request, engine: str, query: str) -> list[SearchResult]: | |
"""Search the web using a search engine and return the results as a list of SearchResult objects. | |
Will look for a search engine API key in environment variables in the following order: | |
- SEARXNG_QUERY_URL | |
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID | |
- BRAVE_SEARCH_API_KEY | |
- KAGI_SEARCH_API_KEY | |
- MOJEEK_SEARCH_API_KEY | |
- SERPSTACK_API_KEY | |
- SERPER_API_KEY | |
- SERPLY_API_KEY | |
- TAVILY_API_KEY | |
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`) | |
Args: | |
query (str): The query to search for | |
""" | |
# TODO: add playwright to search the web | |
if engine == "searxng": | |
if request.app.state.config.SEARXNG_QUERY_URL: | |
return search_searxng( | |
request.app.state.config.SEARXNG_QUERY_URL, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No SEARXNG_QUERY_URL found in environment variables") | |
elif engine == "google_pse": | |
if ( | |
request.app.state.config.GOOGLE_PSE_API_KEY | |
and request.app.state.config.GOOGLE_PSE_ENGINE_ID | |
): | |
return search_google_pse( | |
request.app.state.config.GOOGLE_PSE_API_KEY, | |
request.app.state.config.GOOGLE_PSE_ENGINE_ID, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception( | |
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables" | |
) | |
elif engine == "brave": | |
if request.app.state.config.BRAVE_SEARCH_API_KEY: | |
return search_brave( | |
request.app.state.config.BRAVE_SEARCH_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables") | |
elif engine == "kagi": | |
if request.app.state.config.KAGI_SEARCH_API_KEY: | |
return search_kagi( | |
request.app.state.config.KAGI_SEARCH_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No KAGI_SEARCH_API_KEY found in environment variables") | |
elif engine == "mojeek": | |
if request.app.state.config.MOJEEK_SEARCH_API_KEY: | |
return search_mojeek( | |
request.app.state.config.MOJEEK_SEARCH_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables") | |
elif engine == "serpstack": | |
if request.app.state.config.SERPSTACK_API_KEY: | |
return search_serpstack( | |
request.app.state.config.SERPSTACK_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
https_enabled=request.app.state.config.SERPSTACK_HTTPS, | |
) | |
else: | |
raise Exception("No SERPSTACK_API_KEY found in environment variables") | |
elif engine == "serper": | |
if request.app.state.config.SERPER_API_KEY: | |
return search_serper( | |
request.app.state.config.SERPER_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No SERPER_API_KEY found in environment variables") | |
elif engine == "serply": | |
if request.app.state.config.SERPLY_API_KEY: | |
return search_serply( | |
request.app.state.config.SERPLY_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No SERPLY_API_KEY found in environment variables") | |
elif engine == "duckduckgo": | |
return search_duckduckgo( | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
elif engine == "tavily": | |
if request.app.state.config.TAVILY_API_KEY: | |
return search_tavily( | |
request.app.state.config.TAVILY_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
) | |
else: | |
raise Exception("No TAVILY_API_KEY found in environment variables") | |
elif engine == "searchapi": | |
if request.app.state.config.SEARCHAPI_API_KEY: | |
return search_searchapi( | |
request.app.state.config.SEARCHAPI_API_KEY, | |
request.app.state.config.SEARCHAPI_ENGINE, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No SEARCHAPI_API_KEY found in environment variables") | |
elif engine == "jina": | |
return search_jina( | |
request.app.state.config.JINA_API_KEY, | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
) | |
elif engine == "bing": | |
return search_bing( | |
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, | |
request.app.state.config.BING_SEARCH_V7_ENDPOINT, | |
str(DEFAULT_LOCALE), | |
query, | |
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, | |
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, | |
) | |
else: | |
raise Exception("No search engine API key found in environment variables") | |
def process_web_search( | |
request: Request, form_data: SearchForm, user=Depends(get_verified_user) | |
): | |
try: | |
logging.info( | |
f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}" | |
) | |
web_results = search_web( | |
request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e), | |
) | |
log.debug(f"web_results: {web_results}") | |
try: | |
collection_name = form_data.collection_name | |
if collection_name == "" or collection_name is None: | |
collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[ | |
:63 | |
] | |
urls = [result.link for result in web_results] | |
loader = get_web_loader( | |
urls, | |
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, | |
) | |
docs = loader.load() | |
save_docs_to_vector_db(request, docs, collection_name, overwrite=True) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filenames": urls, | |
} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class QueryDocForm(BaseModel): | |
collection_name: str | |
query: str | |
k: Optional[int] = None | |
r: Optional[float] = None | |
hybrid: Optional[bool] = None | |
def query_doc_handler( | |
request: Request, | |
form_data: QueryDocForm, | |
user=Depends(get_verified_user), | |
): | |
try: | |
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH: | |
return query_doc_with_hybrid_search( | |
collection_name=form_data.collection_name, | |
query=form_data.query, | |
embedding_function=request.app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else request.app.state.config.TOP_K, | |
reranking_function=request.app.state.rf, | |
r=( | |
form_data.r | |
if form_data.r | |
else request.app.state.config.RELEVANCE_THRESHOLD | |
), | |
) | |
else: | |
return query_doc( | |
collection_name=form_data.collection_name, | |
query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query), | |
k=form_data.k if form_data.k else request.app.state.config.TOP_K, | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class QueryCollectionsForm(BaseModel): | |
collection_names: list[str] | |
query: str | |
k: Optional[int] = None | |
r: Optional[float] = None | |
hybrid: Optional[bool] = None | |
def query_collection_handler( | |
request: Request, | |
form_data: QueryCollectionsForm, | |
user=Depends(get_verified_user), | |
): | |
try: | |
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH: | |
return query_collection_with_hybrid_search( | |
collection_names=form_data.collection_names, | |
queries=[form_data.query], | |
embedding_function=request.app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else request.app.state.config.TOP_K, | |
reranking_function=request.app.state.rf, | |
r=( | |
form_data.r | |
if form_data.r | |
else request.app.state.config.RELEVANCE_THRESHOLD | |
), | |
) | |
else: | |
return query_collection( | |
collection_names=form_data.collection_names, | |
queries=[form_data.query], | |
embedding_function=request.app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else request.app.state.config.TOP_K, | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
#################################### | |
# | |
# Vector DB operations | |
# | |
#################################### | |
class DeleteForm(BaseModel): | |
collection_name: str | |
file_id: str | |
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)): | |
try: | |
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name): | |
file = Files.get_file_by_id(form_data.file_id) | |
hash = file.hash | |
VECTOR_DB_CLIENT.delete( | |
collection_name=form_data.collection_name, | |
metadata={"hash": hash}, | |
) | |
return {"status": True} | |
else: | |
return {"status": False} | |
except Exception as e: | |
log.exception(e) | |
return {"status": False} | |
def reset_vector_db(user=Depends(get_admin_user)): | |
VECTOR_DB_CLIENT.reset() | |
Knowledges.delete_all_knowledge() | |
def reset_upload_dir(user=Depends(get_admin_user)) -> bool: | |
folder = f"{UPLOAD_DIR}" | |
try: | |
# Check if the directory exists | |
if os.path.exists(folder): | |
# Iterate over all the files and directories in the specified directory | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) # Remove the file or link | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) # Remove the directory | |
except Exception as e: | |
print(f"Failed to delete {file_path}. Reason: {e}") | |
else: | |
print(f"The directory {folder} does not exist") | |
except Exception as e: | |
print(f"Failed to process the directory {folder}. Reason: {e}") | |
return True | |
if ENV == "dev": | |
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"): | |
return {"result": request.app.state.EMBEDDING_FUNCTION(text)} | |
class BatchProcessFilesForm(BaseModel): | |
files: List[FileModel] | |
collection_name: str | |
class BatchProcessFilesResult(BaseModel): | |
file_id: str | |
status: str | |
error: Optional[str] = None | |
class BatchProcessFilesResponse(BaseModel): | |
results: List[BatchProcessFilesResult] | |
errors: List[BatchProcessFilesResult] | |
def process_files_batch( | |
request: Request, | |
form_data: BatchProcessFilesForm, | |
user=Depends(get_verified_user), | |
) -> BatchProcessFilesResponse: | |
""" | |
Process a batch of files and save them to the vector database. | |
""" | |
results: List[BatchProcessFilesResult] = [] | |
errors: List[BatchProcessFilesResult] = [] | |
collection_name = form_data.collection_name | |
# Prepare all documents first | |
all_docs: List[Document] = [] | |
for file in form_data.files: | |
try: | |
text_content = file.data.get("content", "") | |
docs: List[Document] = [ | |
Document( | |
page_content=text_content.replace("<br/>", "\n"), | |
metadata={ | |
**file.meta, | |
"name": file.filename, | |
"created_by": file.user_id, | |
"file_id": file.id, | |
"source": file.filename, | |
}, | |
) | |
] | |
hash = calculate_sha256_string(text_content) | |
Files.update_file_hash_by_id(file.id, hash) | |
Files.update_file_data_by_id(file.id, {"content": text_content}) | |
all_docs.extend(docs) | |
results.append(BatchProcessFilesResult(file_id=file.id, status="prepared")) | |
except Exception as e: | |
log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}") | |
errors.append( | |
BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e)) | |
) | |
# Save all documents in one batch | |
if all_docs: | |
try: | |
save_docs_to_vector_db( | |
request=request, | |
docs=all_docs, | |
collection_name=collection_name, | |
add=True, | |
) | |
# Update all files with collection name | |
for result in results: | |
Files.update_file_metadata_by_id( | |
result.file_id, {"collection_name": collection_name} | |
) | |
result.status = "completed" | |
except Exception as e: | |
log.error( | |
f"process_files_batch: Error saving documents to vector DB: {str(e)}" | |
) | |
for result in results: | |
result.status = "failed" | |
errors.append( | |
BatchProcessFilesResult(file_id=result.file_id, error=str(e)) | |
) | |
return BatchProcessFilesResponse(results=results, errors=errors) | |