Spaces:
Running
Running
import hashlib | |
import json | |
import logging | |
import os | |
import uuid | |
from functools import lru_cache | |
from pathlib import Path | |
from pydub import AudioSegment | |
from pydub.silence import split_on_silence | |
import aiohttp | |
import aiofiles | |
import requests | |
from fastapi import ( | |
Depends, | |
FastAPI, | |
File, | |
HTTPException, | |
Request, | |
UploadFile, | |
status, | |
APIRouter, | |
) | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import FileResponse | |
from pydantic import BaseModel | |
from open_webui.utils.auth import get_admin_user, get_verified_user | |
from open_webui.config import ( | |
WHISPER_MODEL_AUTO_UPDATE, | |
WHISPER_MODEL_DIR, | |
CACHE_DIR, | |
) | |
from open_webui.constants import ERROR_MESSAGES | |
from open_webui.env import ( | |
ENV, | |
SRC_LOG_LEVELS, | |
DEVICE_TYPE, | |
ENABLE_FORWARD_USER_INFO_HEADERS, | |
) | |
router = APIRouter() | |
# Constants | |
MAX_FILE_SIZE_MB = 25 | |
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["AUDIO"]) | |
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/") | |
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) | |
########################################## | |
# | |
# Utility functions | |
# | |
########################################## | |
from pydub import AudioSegment | |
from pydub.utils import mediainfo | |
def is_mp4_audio(file_path): | |
"""Check if the given file is an MP4 audio file.""" | |
if not os.path.isfile(file_path): | |
print(f"File not found: {file_path}") | |
return False | |
info = mediainfo(file_path) | |
if ( | |
info.get("codec_name") == "aac" | |
and info.get("codec_type") == "audio" | |
and info.get("codec_tag_string") == "mp4a" | |
): | |
return True | |
return False | |
def convert_mp4_to_wav(file_path, output_path): | |
"""Convert MP4 audio file to WAV format.""" | |
audio = AudioSegment.from_file(file_path, format="mp4") | |
audio.export(output_path, format="wav") | |
print(f"Converted {file_path} to {output_path}") | |
def set_faster_whisper_model(model: str, auto_update: bool = False): | |
whisper_model = None | |
if model: | |
from faster_whisper import WhisperModel | |
faster_whisper_kwargs = { | |
"model_size_or_path": model, | |
"device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu", | |
"compute_type": "int8", | |
"download_root": WHISPER_MODEL_DIR, | |
"local_files_only": not auto_update, | |
} | |
try: | |
whisper_model = WhisperModel(**faster_whisper_kwargs) | |
except Exception: | |
log.warning( | |
"WhisperModel initialization failed, attempting download with local_files_only=False" | |
) | |
faster_whisper_kwargs["local_files_only"] = False | |
whisper_model = WhisperModel(**faster_whisper_kwargs) | |
return whisper_model | |
########################################## | |
# | |
# Audio API | |
# | |
########################################## | |
class TTSConfigForm(BaseModel): | |
OPENAI_API_BASE_URL: str | |
OPENAI_API_KEY: str | |
API_KEY: str | |
ENGINE: str | |
MODEL: str | |
VOICE: str | |
SPLIT_ON: str | |
AZURE_SPEECH_REGION: str | |
AZURE_SPEECH_OUTPUT_FORMAT: str | |
class STTConfigForm(BaseModel): | |
OPENAI_API_BASE_URL: str | |
OPENAI_API_KEY: str | |
ENGINE: str | |
MODEL: str | |
WHISPER_MODEL: str | |
class AudioConfigUpdateForm(BaseModel): | |
tts: TTSConfigForm | |
stt: STTConfigForm | |
async def get_audio_config(request: Request, user=Depends(get_admin_user)): | |
return { | |
"tts": { | |
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, | |
"API_KEY": request.app.state.config.TTS_API_KEY, | |
"ENGINE": request.app.state.config.TTS_ENGINE, | |
"MODEL": request.app.state.config.TTS_MODEL, | |
"VOICE": request.app.state.config.TTS_VOICE, | |
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, | |
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, | |
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, | |
}, | |
"stt": { | |
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, | |
"ENGINE": request.app.state.config.STT_ENGINE, | |
"MODEL": request.app.state.config.STT_MODEL, | |
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, | |
}, | |
} | |
async def update_audio_config( | |
request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user) | |
): | |
request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL | |
request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY | |
request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY | |
request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE | |
request.app.state.config.TTS_MODEL = form_data.tts.MODEL | |
request.app.state.config.TTS_VOICE = form_data.tts.VOICE | |
request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON | |
request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION | |
request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = ( | |
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT | |
) | |
request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL | |
request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY | |
request.app.state.config.STT_ENGINE = form_data.stt.ENGINE | |
request.app.state.config.STT_MODEL = form_data.stt.MODEL | |
request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL | |
if request.app.state.config.STT_ENGINE == "": | |
request.app.state.faster_whisper_model = set_faster_whisper_model( | |
form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE | |
) | |
return { | |
"tts": { | |
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, | |
"API_KEY": request.app.state.config.TTS_API_KEY, | |
"ENGINE": request.app.state.config.TTS_ENGINE, | |
"MODEL": request.app.state.config.TTS_MODEL, | |
"VOICE": request.app.state.config.TTS_VOICE, | |
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, | |
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, | |
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, | |
}, | |
"stt": { | |
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, | |
"ENGINE": request.app.state.config.STT_ENGINE, | |
"MODEL": request.app.state.config.STT_MODEL, | |
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, | |
}, | |
} | |
def load_speech_pipeline(request): | |
from transformers import pipeline | |
from datasets import load_dataset | |
if request.app.state.speech_synthesiser is None: | |
request.app.state.speech_synthesiser = pipeline( | |
"text-to-speech", "microsoft/speecht5_tts" | |
) | |
if request.app.state.speech_speaker_embeddings_dataset is None: | |
request.app.state.speech_speaker_embeddings_dataset = load_dataset( | |
"Matthijs/cmu-arctic-xvectors", split="validation" | |
) | |
async def speech(request: Request, user=Depends(get_verified_user)): | |
body = await request.body() | |
name = hashlib.sha256( | |
body | |
+ str(request.app.state.config.TTS_ENGINE).encode("utf-8") | |
+ str(request.app.state.config.TTS_MODEL).encode("utf-8") | |
).hexdigest() | |
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") | |
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") | |
# Check if the file already exists in the cache | |
if file_path.is_file(): | |
return FileResponse(file_path) | |
payload = None | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
if request.app.state.config.TTS_ENGINE == "openai": | |
payload["model"] = request.app.state.config.TTS_MODEL | |
try: | |
# print(payload) | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech", | |
json=payload, | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}", | |
**( | |
{ | |
"X-OpenWebUI-User-Name": user.name, | |
"X-OpenWebUI-User-Id": user.id, | |
"X-OpenWebUI-User-Email": user.email, | |
"X-OpenWebUI-User-Role": user.role, | |
} | |
if ENABLE_FORWARD_USER_INFO_HEADERS | |
else {} | |
), | |
}, | |
) as r: | |
r.raise_for_status() | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await r.read()) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(payload)) | |
return FileResponse(file_path) | |
except Exception as e: | |
log.exception(e) | |
detail = None | |
try: | |
if r.status != 200: | |
res = await r.json() | |
if "error" in res: | |
detail = f"External: {res['error'].get('message', '')}" | |
except Exception: | |
detail = f"External: {e}" | |
raise HTTPException( | |
status_code=getattr(r, "status", 500), | |
detail=detail if detail else "Open WebUI: Server Connection Error", | |
) | |
elif request.app.state.config.TTS_ENGINE == "elevenlabs": | |
voice_id = payload.get("voice", "") | |
if voice_id not in get_available_voices(request): | |
raise HTTPException( | |
status_code=400, | |
detail="Invalid voice id", | |
) | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}", | |
json={ | |
"text": payload["input"], | |
"model_id": request.app.state.config.TTS_MODEL, | |
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5}, | |
}, | |
headers={ | |
"Accept": "audio/mpeg", | |
"Content-Type": "application/json", | |
"xi-api-key": request.app.state.config.TTS_API_KEY, | |
}, | |
) as r: | |
r.raise_for_status() | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await r.read()) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(payload)) | |
return FileResponse(file_path) | |
except Exception as e: | |
log.exception(e) | |
detail = None | |
try: | |
if r.status != 200: | |
res = await r.json() | |
if "error" in res: | |
detail = f"External: {res['error'].get('message', '')}" | |
except Exception: | |
detail = f"External: {e}" | |
raise HTTPException( | |
status_code=getattr(r, "status", 500), | |
detail=detail if detail else "Open WebUI: Server Connection Error", | |
) | |
elif request.app.state.config.TTS_ENGINE == "azure": | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
region = request.app.state.config.TTS_AZURE_SPEECH_REGION | |
language = request.app.state.config.TTS_VOICE | |
locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1]) | |
output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT | |
try: | |
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}"> | |
<voice name="{language}">{payload["input"]}</voice> | |
</speak>""" | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1", | |
headers={ | |
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY, | |
"Content-Type": "application/ssml+xml", | |
"X-Microsoft-OutputFormat": output_format, | |
}, | |
data=data, | |
) as r: | |
r.raise_for_status() | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await r.read()) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(payload)) | |
return FileResponse(file_path) | |
except Exception as e: | |
log.exception(e) | |
detail = None | |
try: | |
if r.status != 200: | |
res = await r.json() | |
if "error" in res: | |
detail = f"External: {res['error'].get('message', '')}" | |
except Exception: | |
detail = f"External: {e}" | |
raise HTTPException( | |
status_code=getattr(r, "status", 500), | |
detail=detail if detail else "Open WebUI: Server Connection Error", | |
) | |
elif request.app.state.config.TTS_ENGINE == "transformers": | |
payload = None | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
import torch | |
import soundfile as sf | |
load_speech_pipeline(request) | |
embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset | |
speaker_index = 6799 | |
try: | |
speaker_index = embeddings_dataset["filename"].index( | |
request.app.state.config.TTS_MODEL | |
) | |
except Exception: | |
pass | |
speaker_embedding = torch.tensor( | |
embeddings_dataset[speaker_index]["xvector"] | |
).unsqueeze(0) | |
speech = request.app.state.speech_synthesiser( | |
payload["input"], | |
forward_params={"speaker_embeddings": speaker_embedding}, | |
) | |
sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"]) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(payload)) | |
return FileResponse(file_path) | |
def transcribe(request: Request, file_path): | |
print("transcribe", file_path) | |
filename = os.path.basename(file_path) | |
file_dir = os.path.dirname(file_path) | |
id = filename.split(".")[0] | |
if request.app.state.config.STT_ENGINE == "": | |
if request.app.state.faster_whisper_model is None: | |
request.app.state.faster_whisper_model = set_faster_whisper_model( | |
request.app.state.config.WHISPER_MODEL | |
) | |
model = request.app.state.faster_whisper_model | |
segments, info = model.transcribe(file_path, beam_size=5) | |
log.info( | |
"Detected language '%s' with probability %f" | |
% (info.language, info.language_probability) | |
) | |
transcript = "".join([segment.text for segment in list(segments)]) | |
data = {"text": transcript.strip()} | |
# save the transcript to a json file | |
transcript_file = f"{file_dir}/{id}.json" | |
with open(transcript_file, "w") as f: | |
json.dump(data, f) | |
log.debug(data) | |
return data | |
elif request.app.state.config.STT_ENGINE == "openai": | |
if is_mp4_audio(file_path): | |
os.rename(file_path, file_path.replace(".wav", ".mp4")) | |
# Convert MP4 audio file to WAV format | |
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path) | |
r = None | |
try: | |
r = requests.post( | |
url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions", | |
headers={ | |
"Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}" | |
}, | |
files={"file": (filename, open(file_path, "rb"))}, | |
data={"model": request.app.state.config.STT_MODEL}, | |
) | |
r.raise_for_status() | |
data = r.json() | |
# save the transcript to a json file | |
transcript_file = f"{file_dir}/{id}.json" | |
with open(transcript_file, "w") as f: | |
json.dump(data, f) | |
return data | |
except Exception as e: | |
log.exception(e) | |
detail = None | |
if r is not None: | |
try: | |
res = r.json() | |
if "error" in res: | |
detail = f"External: {res['error'].get('message', '')}" | |
except Exception: | |
detail = f"External: {e}" | |
raise Exception(detail if detail else "Open WebUI: Server Connection Error") | |
def compress_audio(file_path): | |
if os.path.getsize(file_path) > MAX_FILE_SIZE: | |
file_dir = os.path.dirname(file_path) | |
audio = AudioSegment.from_file(file_path) | |
audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio | |
compressed_path = f"{file_dir}/{id}_compressed.opus" | |
audio.export(compressed_path, format="opus", bitrate="32k") | |
log.debug(f"Compressed audio to {compressed_path}") | |
if ( | |
os.path.getsize(compressed_path) > MAX_FILE_SIZE | |
): # Still larger than MAX_FILE_SIZE after compression | |
raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB")) | |
return compressed_path | |
else: | |
return file_path | |
def transcription( | |
request: Request, | |
file: UploadFile = File(...), | |
user=Depends(get_verified_user), | |
): | |
log.info(f"file.content_type: {file.content_type}") | |
if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED, | |
) | |
try: | |
ext = file.filename.split(".")[-1] | |
id = uuid.uuid4() | |
filename = f"{id}.{ext}" | |
contents = file.file.read() | |
file_dir = f"{CACHE_DIR}/audio/transcriptions" | |
os.makedirs(file_dir, exist_ok=True) | |
file_path = f"{file_dir}/{filename}" | |
with open(file_path, "wb") as f: | |
f.write(contents) | |
try: | |
try: | |
file_path = compress_audio(file_path) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
data = transcribe(request, file_path) | |
file_path = file_path.split("/")[-1] | |
return {**data, "filename": file_path} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def get_available_models(request: Request) -> list[dict]: | |
available_models = [] | |
if request.app.state.config.TTS_ENGINE == "openai": | |
available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}] | |
elif request.app.state.config.TTS_ENGINE == "elevenlabs": | |
try: | |
response = requests.get( | |
"https://api.elevenlabs.io/v1/models", | |
headers={ | |
"xi-api-key": request.app.state.config.TTS_API_KEY, | |
"Content-Type": "application/json", | |
}, | |
timeout=5, | |
) | |
response.raise_for_status() | |
models = response.json() | |
available_models = [ | |
{"name": model["name"], "id": model["model_id"]} for model in models | |
] | |
except requests.RequestException as e: | |
log.error(f"Error fetching voices: {str(e)}") | |
return available_models | |
async def get_models(request: Request, user=Depends(get_verified_user)): | |
return {"models": get_available_models(request)} | |
def get_available_voices(request) -> dict: | |
"""Returns {voice_id: voice_name} dict""" | |
available_voices = {} | |
if request.app.state.config.TTS_ENGINE == "openai": | |
available_voices = { | |
"alloy": "alloy", | |
"echo": "echo", | |
"fable": "fable", | |
"onyx": "onyx", | |
"nova": "nova", | |
"shimmer": "shimmer", | |
} | |
elif request.app.state.config.TTS_ENGINE == "elevenlabs": | |
try: | |
available_voices = get_elevenlabs_voices( | |
api_key=request.app.state.config.TTS_API_KEY | |
) | |
except Exception: | |
# Avoided @lru_cache with exception | |
pass | |
elif request.app.state.config.TTS_ENGINE == "azure": | |
try: | |
region = request.app.state.config.TTS_AZURE_SPEECH_REGION | |
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list" | |
headers = { | |
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY | |
} | |
response = requests.get(url, headers=headers) | |
response.raise_for_status() | |
voices = response.json() | |
for voice in voices: | |
available_voices[voice["ShortName"]] = ( | |
f"{voice['DisplayName']} ({voice['ShortName']})" | |
) | |
except requests.RequestException as e: | |
log.error(f"Error fetching voices: {str(e)}") | |
return available_voices | |
def get_elevenlabs_voices(api_key: str) -> dict: | |
""" | |
Note, set the following in your .env file to use Elevenlabs: | |
AUDIO_TTS_ENGINE=elevenlabs | |
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key | |
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices | |
AUDIO_TTS_MODEL=eleven_multilingual_v2 | |
""" | |
try: | |
# TODO: Add retries | |
response = requests.get( | |
"https://api.elevenlabs.io/v1/voices", | |
headers={ | |
"xi-api-key": api_key, | |
"Content-Type": "application/json", | |
}, | |
) | |
response.raise_for_status() | |
voices_data = response.json() | |
voices = {} | |
for voice in voices_data.get("voices", []): | |
voices[voice["voice_id"]] = voice["name"] | |
except requests.RequestException as e: | |
# Avoid @lru_cache with exception | |
log.error(f"Error fetching voices: {str(e)}") | |
raise RuntimeError(f"Error fetching voices: {str(e)}") | |
return voices | |
async def get_voices(request: Request, user=Depends(get_verified_user)): | |
return { | |
"voices": [ | |
{"id": k, "name": v} for k, v in get_available_voices(request).items() | |
] | |
} | |