Spaces:
Running
Running
File size: 10,183 Bytes
2cf0297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import logging
import sys
import inspect
import json
from pydantic import BaseModel
from typing import AsyncGenerator, Generator, Iterator
from fastapi import (
Depends,
FastAPI,
File,
Form,
HTTPException,
Request,
UploadFile,
status,
)
from starlette.responses import Response, StreamingResponse
from open_webui.socket.main import (
get_event_call,
get_event_emitter,
)
from open_webui.models.functions import Functions
from open_webui.models.models import Models
from open_webui.utils.plugin import load_function_module_by_id
from open_webui.utils.tools import get_tools
from open_webui.utils.access_control import has_access
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
from open_webui.utils.misc import (
add_or_update_system_message,
get_last_user_message,
prepend_to_first_user_message_content,
openai_chat_chunk_message_template,
openai_chat_completion_message_template,
)
from open_webui.utils.payload import (
apply_model_params_to_body_openai,
apply_model_system_prompt_to_body,
)
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MAIN"])
def get_function_module_by_id(request: Request, pipe_id: str):
# Check if function is already loaded
if pipe_id not in request.app.state.FUNCTIONS:
function_module, _, _ = load_function_module_by_id(pipe_id)
request.app.state.FUNCTIONS[pipe_id] = function_module
else:
function_module = request.app.state.FUNCTIONS[pipe_id]
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"):
valves = Functions.get_function_valves_by_id(pipe_id)
function_module.valves = function_module.Valves(**(valves if valves else {}))
return function_module
async def get_function_models(request):
pipes = Functions.get_functions_by_type("pipe", active_only=True)
pipe_models = []
for pipe in pipes:
function_module = get_function_module_by_id(request, pipe.id)
# Check if function is a manifold
if hasattr(function_module, "pipes"):
sub_pipes = []
# Check if pipes is a function or a list
try:
if callable(function_module.pipes):
sub_pipes = function_module.pipes()
else:
sub_pipes = function_module.pipes
except Exception as e:
log.exception(e)
sub_pipes = []
log.debug(
f"get_function_models: function '{pipe.id}' is a manifold of {sub_pipes}"
)
for p in sub_pipes:
sub_pipe_id = f'{pipe.id}.{p["id"]}'
sub_pipe_name = p["name"]
if hasattr(function_module, "name"):
sub_pipe_name = f"{function_module.name}{sub_pipe_name}"
pipe_flag = {"type": pipe.type}
pipe_models.append(
{
"id": sub_pipe_id,
"name": sub_pipe_name,
"object": "model",
"created": pipe.created_at,
"owned_by": "openai",
"pipe": pipe_flag,
}
)
else:
pipe_flag = {"type": "pipe"}
log.debug(
f"get_function_models: function '{pipe.id}' is a single pipe {{ 'id': {pipe.id}, 'name': {pipe.name} }}"
)
pipe_models.append(
{
"id": pipe.id,
"name": pipe.name,
"object": "model",
"created": pipe.created_at,
"owned_by": "openai",
"pipe": pipe_flag,
}
)
return pipe_models
async def generate_function_chat_completion(
request, form_data, user, models: dict = {}
):
async def execute_pipe(pipe, params):
if inspect.iscoroutinefunction(pipe):
return await pipe(**params)
else:
return pipe(**params)
async def get_message_content(res: str | Generator | AsyncGenerator) -> str:
if isinstance(res, str):
return res
if isinstance(res, Generator):
return "".join(map(str, res))
if isinstance(res, AsyncGenerator):
return "".join([str(stream) async for stream in res])
def process_line(form_data: dict, line):
if isinstance(line, BaseModel):
line = line.model_dump_json()
line = f"data: {line}"
if isinstance(line, dict):
line = f"data: {json.dumps(line)}"
try:
line = line.decode("utf-8")
except Exception:
pass
if line.startswith("data:"):
return f"{line}\n\n"
else:
line = openai_chat_chunk_message_template(form_data["model"], line)
return f"data: {json.dumps(line)}\n\n"
def get_pipe_id(form_data: dict) -> str:
pipe_id = form_data["model"]
if "." in pipe_id:
pipe_id, _ = pipe_id.split(".", 1)
return pipe_id
def get_function_params(function_module, form_data, user, extra_params=None):
if extra_params is None:
extra_params = {}
pipe_id = get_pipe_id(form_data)
# Get the signature of the function
sig = inspect.signature(function_module.pipe)
params = {"body": form_data} | {
k: v for k, v in extra_params.items() if k in sig.parameters
}
if "__user__" in params and hasattr(function_module, "UserValves"):
user_valves = Functions.get_user_valves_by_id_and_user_id(pipe_id, user.id)
try:
params["__user__"]["valves"] = function_module.UserValves(**user_valves)
except Exception as e:
log.exception(e)
params["__user__"]["valves"] = function_module.UserValves()
return params
model_id = form_data.get("model")
model_info = Models.get_model_by_id(model_id)
metadata = form_data.pop("metadata", {})
files = metadata.get("files", [])
tool_ids = metadata.get("tool_ids", [])
# Check if tool_ids is None
if tool_ids is None:
tool_ids = []
__event_emitter__ = None
__event_call__ = None
__task__ = None
__task_body__ = None
if metadata:
if all(k in metadata for k in ("session_id", "chat_id", "message_id")):
__event_emitter__ = get_event_emitter(metadata)
__event_call__ = get_event_call(metadata)
__task__ = metadata.get("task", None)
__task_body__ = metadata.get("task_body", None)
extra_params = {
"__event_emitter__": __event_emitter__,
"__event_call__": __event_call__,
"__task__": __task__,
"__task_body__": __task_body__,
"__files__": files,
"__user__": {
"id": user.id,
"email": user.email,
"name": user.name,
"role": user.role,
},
"__metadata__": metadata,
"__request__": request,
}
extra_params["__tools__"] = get_tools(
request,
tool_ids,
user,
{
**extra_params,
"__model__": models.get(form_data["model"], None),
"__messages__": form_data["messages"],
"__files__": files,
},
)
if model_info:
if model_info.base_model_id:
form_data["model"] = model_info.base_model_id
params = model_info.params.model_dump()
form_data = apply_model_params_to_body_openai(params, form_data)
form_data = apply_model_system_prompt_to_body(params, form_data, user)
pipe_id = get_pipe_id(form_data)
function_module = get_function_module_by_id(request, pipe_id)
pipe = function_module.pipe
params = get_function_params(function_module, form_data, user, extra_params)
if form_data.get("stream", False):
async def stream_content():
try:
res = await execute_pipe(pipe, params)
# Directly return if the response is a StreamingResponse
if isinstance(res, StreamingResponse):
async for data in res.body_iterator:
yield data
return
if isinstance(res, dict):
yield f"data: {json.dumps(res)}\n\n"
return
except Exception as e:
log.error(f"Error: {e}")
yield f"data: {json.dumps({'error': {'detail':str(e)}})}\n\n"
return
if isinstance(res, str):
message = openai_chat_chunk_message_template(form_data["model"], res)
yield f"data: {json.dumps(message)}\n\n"
if isinstance(res, Iterator):
for line in res:
yield process_line(form_data, line)
if isinstance(res, AsyncGenerator):
async for line in res:
yield process_line(form_data, line)
if isinstance(res, str) or isinstance(res, Generator):
finish_message = openai_chat_chunk_message_template(
form_data["model"], ""
)
finish_message["choices"][0]["finish_reason"] = "stop"
yield f"data: {json.dumps(finish_message)}\n\n"
yield "data: [DONE]"
return StreamingResponse(stream_content(), media_type="text/event-stream")
else:
try:
res = await execute_pipe(pipe, params)
except Exception as e:
log.error(f"Error: {e}")
return {"error": {"detail": str(e)}}
if isinstance(res, StreamingResponse) or isinstance(res, dict):
return res
if isinstance(res, BaseModel):
return res.model_dump()
message = await get_message_content(res)
return openai_chat_completion_message_template(form_data["model"], message)
|