import gradio as gr from huggingface_hub import InferenceClient import time # Initialize the client client = InferenceClient("HuggingFaceH4/starchat2-15b-v0.1") def respond( message, chat_history, system_message, max_tokens, temperature, top_p, model_name ): """ Generate chat responses using the specified model. """ # Update client if model changes global client client = InferenceClient(model_name) messages = [{"role": "system", "content": system_message}] # Build conversation history for human_msg, assistant_msg in chat_history: messages.append({"role": "user", "content": human_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" try: # Add user message to history immediately chat_history = chat_history + [(message, None)] yield chat_history for token_data in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = token_data.choices[0].delta.content response += token # Update the last assistant message chat_history[-1] = (message, response) yield chat_history except Exception as e: error_msg = f"Error: {str(e)}" chat_history[-1] = (message, error_msg) yield chat_history def create_chat_interface(): """ Create and configure the Gradio interface """ # Default system message default_system = ''' You are a pragmatic coding assistant specializing in Python. Your task is to strictly respond with **Python code only**, ensuring all explanations and comments are embedded within the script using **multi-line comment blocks** (`### or #`). **Response Requirements:** - **No external ### Explanation ### ** All descriptions, justifications, and context must be inside the script. - **Follow OOP principles** where applicable, improving maintainability and extensibility. - **Ensure compliance with PEP8 and autopep8 formatting.** - **Enhance and refactor the provided script**, making it a more efficient, readable, and reusable # IMPROVED PYTHON CODE #. - **At the end of every script, include a '### Future Features ###' comment block** outlining possible enhancements. **Example Response Format:** ```python # filename.py # Module: Improved Script v1.0 # Description: [Brief explanation of script functionality] # IMPROVED PYTHON CODE # ### Explanation ### #- inside comment block. ### Future Features ### #- Suggested improvement 1 #- Suggested improvement 2 ``` Now, improve and enhance the following script: ''' qwen_options_coder = ["0.5B", "1.5B", "3B", "7B", "14B", "32B", ] # Available models models = [ "Qwen/Qwen2.5-Coder-3B-Instruct", "Qwen/Qwen2.5-Coder-1.5B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-alpha", "HuggingFaceH4/starchat2-15b-v0.1", "meta-llama/Llama-2-70b-chat-hf", "mistralai/Mixtral-8x7B-Instruct-v0.1" ] # Create the interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🤖 Advanced AI Chatbot") chatbot = gr.Chatbot( height=600, show_label=False, container=True, ) with gr.Row(): with gr.Column(scale=4): msg = gr.Textbox( show_label=False, placeholder="Type your message here...", container=False ) with gr.Column(scale=1, min_width=100): send = gr.Button("Send") with gr.Accordion("Settings", open=False): system_msg = gr.Textbox( label="System Message", value=default_system, lines=20 ) model = gr.Dropdown( choices=models, value=models[0], label="Model" ) with gr.Row(): with gr.Column(): temperature = gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" ) max_tokens = gr.Slider( minimum=50, maximum=4096, value=2048, step=1, label="Max Tokens" ) with gr.Column(): top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P" ) clear = gr.Button("Clear Chat") # Handle sending messages msg.submit( respond, [msg, chatbot, system_msg, max_tokens, temperature, top_p, model], [chatbot] ).then( lambda: "", None, msg, queue=False ) send.click( respond, [msg, chatbot, system_msg, max_tokens, temperature, top_p, model], [chatbot] ).then( lambda: "", None, msg, queue=False ) # Clear chat history clear.click(lambda: None, None, chatbot, queue=False) # Example prompts gr.Examples( examples=[ ["Tell me a short story about a robot learning to paint."], ["Explain quantum computing in simple terms."], ["Write a haiku about artificial intelligence."] ], inputs=msg ) return demo # Create and launch the interface if __name__ == "__main__": demo = create_chat_interface() demo.queue() demo.launch( share=False, # Disable sharing on Spaces )