import spaces import gradio as gr from huggingface_hub import HfApi, ModelInfo, DatasetInfo, SpaceInfo, Collection from huggingface_hub.hf_api import PaperInfo from typing import Union import gc import pandas as pd import datetime import json import re from hfconstants import DS_SIZE_CATEGORIES, SPACE_HARDWARES, SPACE_STAGES, SPACE_STAGES_EMOJI, EMOJIS @spaces.GPU def dummy_gpu(): pass TYPES_SHORT = {"model": "M", "dataset": "D", "space": "S", "paper": "P", "collection": "C"} TYPES_URL = {"model": "https://huggingface.co./models", "dataset": "https://huggingface.co./datasets", "space": "https://huggingface.co./spaces", "paper": "https://huggingface.co./papers", "collection": "https://huggingface.co./collections"} TYPES_DESC = " / ".join([f"[{v}={k}]({TYPES_URL.get(k, 'https://hf.co')})" for k, v in zip(list(TYPES_SHORT.keys()), list(TYPES_SHORT.values()))]) RESULT_ITEMS = { "T": [1, "str", True], "ID": [2, "markdown", True, "40%"], "User": [4, "str", False], "Name": [5, "str", False], "URL": [6, "str", False], "Status": [7, "markdown", True], "Gated": [8, "str", True], "Likes": [10, "number", True], "DLs": [12, "number", True], "AllDLs": [13, "number", False], "Trending": [16, "number", True], "LastMod.": [17, "str", True], "Library": [20, "markdown", False], "Pipeline": [21, "markdown", True], "SDK": [24, "str", False], "Hardware": [25, "str", False], "Stage": [26, "str", False], "Emoji": [35, "str", False], "NFAA": [40, "str", False], } SORT_PARAM_TO_ITEM = { "last_modified": "LastMod.", "likes": "Likes", "downloads": "DLs", "downloads_all_time": "AllDLs", "trending_score": "Trending", } try: with open("tags.json", encoding="utf-8") as f: TAGS = json.load(f) with open("subtags.json", encoding="utf-8") as f: SUBTAGS = json.load(f) except Exception as e: TAGS = [] SUBTAGS = {} print(e) def get_tags(): return TAGS[0:1000] def get_subtag_categories(): return list(SUBTAGS.keys()) def update_subtag_items(category: str): choices=[""] + list(SUBTAGS.get(category, [])) return gr.update(choices=choices, value=choices[0]) def update_subtags(tags: str, category: str, item: str): addtag = f"{category}:{item}" if item else "" newtags = f"{tags}\n{addtag}" if tags else addtag return newtags def update_tags(tags: str, item: str): newtags = f"{tags}\n{item}" if tags else item return newtags def get_repo_type(repo_id: str): try: api = HfApi() if api.repo_exists(repo_id=repo_id, repo_type="dataset"): return "dataset" elif api.repo_exists(repo_id=repo_id, repo_type="space"): return "space" elif api.repo_exists(repo_id=repo_id): return "model" else: return None except Exception as e: print(e) raise Exception(f"Repo not found: {repo_id} {e}") def sort_dict(d: dict): return dict(sorted(d.items(), key=lambda x: x[1], reverse=True)) def get_repo_likers(repo_id: str, repo_type: str="model"): try: api = HfApi() user_list = [] users = api.list_repo_likers(repo_id=repo_id, repo_type=repo_type) for user in users: user_list.append(user.username) return user_list except Exception as e: print(e) raise Exception(e) def get_liked_repos(users: list[str]): try: api = HfApi() likes_dict = {} types_dict = {} for user in users: likes = api.list_liked_repos(user=user) for id in likes.models: likes_dict[id] = likes_dict.get(id, 1) + 1 types_dict[id] = "model" for id in likes.datasets: likes_dict[id] = likes_dict.get(id, 1) + 1 types_dict[id] = "dataset" for id in likes.spaces: likes_dict[id] = likes_dict.get(id, 1) + 1 types_dict[id] = "space" likes_dict = sort_dict(likes_dict) likes_list = list(likes_dict.keys()) types_list = [types_dict[x] for x in likes_list] counts_list = list(likes_dict.values()) return likes_list, types_list, counts_list except Exception as e: print(e) raise Exception(e) def get_repo_collections(repo_id: str, repo_type: str="model", limit=10): try: api = HfApi() if repo_type == "dataset": item = f"datasets/{repo_id}" elif repo_type == "space": item = f"spaces/{repo_id}" else: item = f"models/{repo_id}" cols_dict = {} types_dict = {} cols = api.list_collections(item=item, sort="upvotes", limit=limit) for c in cols: col = api.get_collection(collection_slug=c.slug) for i in col.items: id = i.item_id cols_dict[id] = cols_dict.get(id, 1) + 1 types_dict[id] = i.item_type cols_dict = sort_dict(cols_dict) cols_list = list(cols_dict.keys()) types_list = [types_dict[x] for x in cols_list] counts_list = list(cols_dict.values()) return cols_list, types_list, counts_list except Exception as e: print(e) raise Exception(e) def get_users_collections(users: list[str], limit=10): try: api = HfApi() cols_dict = {} types_dict = {} for user in users[0:6]: cols = api.list_collections(owner=user, sort="upvotes", limit=limit) for c in cols: col = api.get_collection(collection_slug=c.slug) for i in col.items: id = i.item_id cols_dict[id] = cols_dict.get(id, 1) + 1 types_dict[id] = i.item_type cols_dict = sort_dict(cols_dict) cols_list = list(cols_dict.keys()) types_list = [types_dict[x] for x in cols_list] counts_list = list(cols_dict.values()) return cols_list, types_list, counts_list except Exception as e: print(e) raise Exception(e) def get_ref_repos(repo_id: str): refs = {} types = {} repo_type = get_repo_type(repo_id) likers = get_repo_likers(repo_id, repo_type)[0:10] for i, t, c in zip(*get_liked_repos(likers)): refs[i] = refs.get(i, 0) + c * 2 types[i] = t for i, t, c in zip(*get_repo_collections(repo_id, repo_type)): refs[i] = refs.get(i, 0) + c * 5 types[i] = t refs = sort_dict(refs) if repo_id in refs.keys(): refs.pop(repo_id) refs_list = list(refs.keys()) types_list = [types[x] for x in refs_list] counts_list = list(refs.values()) return refs_list, types_list, counts_list def get_collections_by_repo(repo_id: str, repo_type: str="model", limit=100): try: api = HfApi() if repo_type == "dataset": item = f"datasets/{repo_id}" elif repo_type == "space": item = f"spaces/{repo_id}" else: item = f"models/{repo_id}" cols = api.list_collections(item=item, sort="upvotes", limit=limit) return [c for c in cols] except Exception as e: print(e) raise Exception(e) def get_collections_by_users(users: list[str], limit=100): try: api = HfApi() cols_list = [] for user in users[0:6]: cols = api.list_collections(owner=user, sort="upvotes", limit=limit) for col in cols: cols_list.append(col) return cols_list except Exception as e: print(e) raise Exception(e) def get_ref_collections(repo_id: str, limit=10): try: repo_type = get_repo_type(repo_id) likers = get_repo_likers(repo_id, repo_type)[0:10] cols = get_collections_by_repo(repo_id, repo_type, limit) + get_collections_by_users(likers, limit) cols = list({k.slug: k for k in cols}.values()) return cols except Exception as e: print(e) raise Exception(e) def get_collections(repo_id: str, repo_limit: int=100, user_limit: int=0): try: if "/" in repo_id: # Repo ID repo_type = get_repo_type(repo_id) likers = get_repo_likers(repo_id, repo_type)[0:user_limit+1] cols = get_collections_by_repo(repo_id, repo_type, repo_limit) + get_collections_by_users(likers, 50) else: cols = get_collections_by_users([repo_id], 50) # User ID cols = list({k.slug: k for k in cols}.values()) return cols except Exception as e: print(e) raise Exception(e) def str_to_list(s: str): try: m = re.split("\n", s) return [s.strip() for s in list(m)] except Exception: return [] def is_valid_arg(s: str): return len(str_to_list(s)) > 0 def get_labels(): return list(RESULT_ITEMS.keys()) def get_valid_labels(): return [k for k in list(RESULT_ITEMS.keys()) if RESULT_ITEMS[k][2]] def date_to_str(dt: datetime.datetime): return dt.strftime('%Y-%m-%d %H:%M') class Labels(): VALID_DTYPE = ["str", "number", "bool", "date", "markdown"] def __init__(self): self.types = {} self.orders = {} self.widths = {} def set(self, label: str): if not label in RESULT_ITEMS.keys(): raise Exception(f"Invalid item: {label}") item = RESULT_ITEMS.get(label) if item[1] not in self.VALID_DTYPE: raise Exception(f"Invalid data type: {type}") self.types[label] = item[1] self.orders[label] = item[0] if len(item) > 3: self.widths[label] = item[3] else: self.widths[label] = "10%" def get(self): labels = list(self.types.keys()) labels.sort(key=lambda x: self.orders[x]) label_types = [self.types[s] for s in labels] return labels, label_types def get_widths(self): return self.widths.copy() def get_null_value(self, type: str): if type == "bool": return False elif type == "number" or type == "date": return 0 # else: return "" # https://huggingface.co./docs/huggingface_hub/package_reference/hf_api # https://huggingface.co./docs/huggingface_hub/package_reference/hf_api#huggingface_hub.ModelInfo class HFSearchResult(): def __init__(self): self.labels = Labels() self.current_item = {} self.current_item_info = None self.item_list = [] self.item_info_list = [] self.item_hide_flags = [] self.hide_labels = [] self.show_labels = [] self.filter_items = None self.filters = None self.phone_mode = True # gc.collect() def reset(self): self.__init__() def set_mode(self, mode: str): if mode == "Phone": self.phone_mode = True elif mode == "PC": self.phone_mode = False def get_show_labels(self): return ["T", "ID"] if self.phone_mode else self.show_labels def _set(self, data, label: str): self.labels.set(label) self.current_item[label] = data def _next(self): self.item_list.append(self.current_item.copy()) self.current_item = {} self.item_info_list.append(self.current_item_info) self.current_item_info = None self.item_hide_flags.append(False) def add_item(self, i: Union[ModelInfo, DatasetInfo, SpaceInfo]): self.current_item_info = i if isinstance(i, ModelInfo): type = "model" elif isinstance(i, DatasetInfo): type = "dataset" elif isinstance(i, SpaceInfo): type = "space" elif isinstance(i, PaperInfo): type = "paper" elif isinstance(i, Collection): type = "collection" else: return self._set(type, "T") self._set("", "Emoji") if type in ["space", "model", "dataset"]: self._set(i.id, "ID") self._set(i.id.split("/")[0], "User") self._set(i.id.split("/")[1], "Name") if type == "dataset": self._set(f"https://hf.co/datasets/{i.id}", "URL") elif type == "space": self._set(f"https://hf.co/spaces/{i.id}", "URL") else: self._set(f"https://hf.co/{i.id}", "URL") if i.likes is not None: self._set(i.likes, "Likes") if i.last_modified is not None: self._set(date_to_str(i.last_modified), "LastMod.") if i.trending_score is not None: self._set(int(i.trending_score), "Trending") if i.tags is not None: self._set("True" if "not-for-all-audiences" in i.tags else "False", "NFAA") if type in ["model", "dataset"]: if i.gated is not None: self._set(i.gated if i.gated else "off", "Gated") if i.downloads is not None: self._set(i.downloads, "DLs") if i.downloads_all_time is not None: self._set(i.downloads_all_time, "AllDLs") if type == "model": if i.inference is not None: self._set(i.inference, "Status") if i.library_name is not None: self._set(i.library_name, "Library") if i.pipeline_tag is not None: self._set(i.pipeline_tag, "Pipeline") if type == "space": if i.sdk is not None: self._set(i.sdk, "SDK") if i.runtime is not None: self._set(i.runtime.hardware, "Hardware") self._set(i.runtime.stage, "Stage") if i.card_data is not None: card = i.card_data if card.title is not None: self._set(card.title, "Name") elif type == "paper": # https://github.com/huggingface/huggingface_hub/blob/v0.27.0/src/huggingface_hub/hf_api.py#L1428 self._set(i.id, "ID") self._set(f"https://hf.co/papers/{i.id}", "URL") if i.submitted_by is not None: self._set(i.submitted_by, "User") if i.title is not None: self._set(i.title, "Name") if i.submitted_at is not None: self._set(date_to_str(i.submitted_at), "LastMod.") if i.upvotes is not None: self._set(i.upvotes, "Likes") elif type == "collection": self._set(i.slug, "ID") if i.owner is not None: self._set(i.owner["name"], "User") if i.title is not None: self._set(i.title, "Name") if i.last_updated is not None: self._set(date_to_str(i.last_updated), "LastMod.") if i.upvotes is not None: self._set(i.upvotes, "Likes") if i.url is not None: self._set(i.url, "URL") self._next() def search(self, repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str, gated: str, appr: list[str], size_categories: list, limit: int, hardware: list, stage: list, followed: str, fetch_detail: list, show_labels: list, ui_mode="PC"): try: self.reset() self.set_mode(ui_mode) self.show_labels = show_labels.copy() api = HfApi() kwargs = {} mkwargs = {} dkwargs = {} skwargs = {} ckwargs = {} pkwargs = {} if filter_str: kwargs["filter"] = str_to_list(filter_str) ckwargs["item"] = str_to_list(filter_str) pkwargs["query"] = str_to_list(filter_str) if search_str: kwargs["search"] = search_str if author: kwargs["author"] = author ckwargs["owner"] = author if tags and is_valid_arg(tags): mkwargs["tags"] = str_to_list(tags) dkwargs["tags"] = str_to_list(tags) if limit > 0: kwargs["limit"] = limit ckwargs["limit"] = 100 if limit > 100 else limit if sort_method == "descending order": kwargs["direction"] = -1 if gated == "gated": mkwargs["gated"] = True dkwargs["gated"] = True elif gated == "non-gated": mkwargs["gated"] = False dkwargs["gated"] = False mkwargs["sort"] = sort if len(size_categories) > 0: dkwargs["size_categories"] = size_categories if infer != "all": mkwargs["inference"] = infer if "model" in repo_types: models = api.list_models(full=True, cardData=True, **kwargs, **mkwargs) for model in models: if model.gated is not None and model.gated and model.gated not in appr: continue self.add_item(model) if "dataset" in repo_types: datasets = api.list_datasets(full=True, **kwargs, **dkwargs) for dataset in datasets: if dataset.gated is not None and dataset.gated and dataset.gated not in appr: continue self.add_item(dataset) if "space" in repo_types: if "Space Runtime" in fetch_detail: spaces = api.list_spaces(expand=["cardData", "datasets", "disabled", "lastModified", "createdAt", "likes", "models", "private", "runtime", "sdk", "sha", "tags", "trendingScore"], **kwargs, **skwargs) else: spaces = api.list_spaces(full=True, **kwargs, **skwargs) for space in spaces: if space.gated is not None and space.gated and space.gated not in appr: continue if space.runtime is not None: if len(hardware) > 0 and space.runtime.stage == "RUNNING" and space.runtime.hardware not in hardware: continue if len(stage) > 0 and space.runtime.stage not in stage: continue self.add_item(space) if "paper" in repo_types: papers = api.list_papers(**pkwargs) for paper in papers: self.add_item(paper) if "collection" in repo_types: cols = api.list_collections(**ckwargs) for col in cols: self.add_item(col) if followed: self.followed_by(followed) self.sort(sort) except Exception as e: raise Exception(f"Search error: {e}") from e def search_collections(self, repo_id: str, sort: str, show_labels: list, repo_limit: int=100, user_limit: int=0, ui_mode="PC"): try: self.reset() self.set_mode(ui_mode) self.show_labels = show_labels.copy() cols = get_collections(repo_id, repo_limit, user_limit) for col in cols: self.add_item(col) self.sort(sort) except Exception as e: raise Exception(f"Search error: {e}") from e def search_ref_repos(self, repo_id: str, repo_types: str, sort: str, show_labels: list, limit=10, ui_mode="PC"): try: self.reset() self.set_mode(ui_mode) self.show_labels = show_labels.copy() api = HfApi() if "model" in repo_types or "dataset" in repo_types or "space" in repo_types or "paper" in repo_types: repos, types, counts = get_ref_repos(repo_id) i = 0 for r, t in zip(repos, types): if i + 1 > limit: break i += 1 if t not in repo_types: continue info = api.repo_info(repo_id=r, repo_type=t) if info: self.add_item(info) if "collection" in repo_types: cols = get_ref_collections(repo_id, limit) for col in cols: self.add_item(col) self.sort(sort) except Exception as e: raise Exception(f"Search error: {e}") from e def get(self): labels, label_types = self.labels.get() self._do_filter() dflist = [[item.get(l, self.labels.get_null_value(t)) for l, t in zip(labels, label_types)] for item, is_hide in zip(self.item_list, self.item_hide_flags) if not is_hide] df = self._to_pandas(dflist, labels) show_label_types = [t for l, t in zip(labels, label_types) if l not in self.hide_labels and l in self.get_show_labels()] show_labels = [l for l in labels if l not in self.hide_labels and l in self.get_show_labels()] return df, show_labels, show_label_types def _to_pandas(self, dflist: list, labels: list): # https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.apply.html # https://stackoverflow.com/questions/41654949/pandas-style-function-to-highlight-specific-columns # https://stackoverflow.com/questions/69832206/pandas-styling-with-conditional-rules # https://stackoverflow.com/questions/41203959/conditionally-format-python-pandas-cell # https://stackoverflow.com/questions/51187868/how-do-i-remove-and-re-sort-reindex-columns-after-applying-style-in-python-pan # https://stackoverflow.com/questions/36921951/truth-value-of-a-series-is-ambiguous-use-a-empty-a-bool-a-item-a-any-o def rank_df(sdf: pd.DataFrame, df: pd.DataFrame, col: str): ranks = [(0.5, "gold"), (0.75, "orange"), (0.9, "orangered")] for t, color in ranks: sdf.loc[df[col] >= df[col].quantile(q=t), [col]] = f'color: {color}' return sdf def highlight_df(x: pd.DataFrame, df: pd.DataFrame): sdf = pd.DataFrame("", index=x.copy().index, columns=x.copy().columns) columns = df.columns if "Trending" in columns: sdf = rank_df(sdf, df, "Trending") if "Likes" in columns: sdf = rank_df(sdf, df, "Likes") if "AllDLs" in columns: sdf = rank_df(sdf, df, "AllDLs") if "DLs" in columns: sdf = rank_df(sdf, df, "DLs") if "Status" in columns: sdf.loc[df["Status"] == "warm", ["T", "Status"]] = 'color: orange' sdf.loc[df["Status"] == "cold", ["T", "Status"]] = 'color: dodgerblue' if "Gated" in columns: sdf.loc[df["Gated"] == "auto", ["Gated"]] = 'color: dodgerblue' sdf.loc[df["Gated"] == "manual", ["Gated"]] = 'color: crimson' if "Stage" in columns and "Hardware" in columns: sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] != "zero-a10g") & (df["Hardware"] != "cpu-basic") & (df["Hardware"]), ["Hardware", "T"]] = 'color: lime' sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] == "zero-a10g"), ["Hardware", "T"]] = 'color: limegreen' sdf.loc[(df["T"] == "space") & (df["Stage"] != "RUNNING")] = 'opacity: 0.5' sdf.loc[(df["T"] == "space") & (df["Stage"] != "RUNNING"), ["T"]] = 'color: crimson' sdf.loc[df["Stage"] == "RUNNING", ["Stage"]] = 'color: lime' if "NFAA" in columns: sdf.loc[df["NFAA"] == "True", ["T"]] = 'background-color: hotpink' show_columns = x.copy().columns style_columns = sdf.columns drop_columns = [c for c in style_columns if c not in show_columns] sdf = sdf.drop(drop_columns, axis=1) return sdf def id_to_md(df: pd.DataFrame, verbose=False): columns = list(df.index) if df["T"] == "collection": id = f'### [{df["User"]}/{df["Name"]}]({df["URL"]}){df["Emoji"]}' elif df["T"] == "space": id = f'### [{df["Name"]} ({df["ID"]})]({df["URL"]}){df["Emoji"]}' elif df["T"] == "paper": id = f'### [{df["Name"]} (arxiv:{df["ID"]})]({df["URL"]}){df["Emoji"]}' else: id = f'### [{df["ID"]}]({df["URL"]}){df["Emoji"]}' if verbose: l = [] if "NFAA" in columns and df["NFAA"] == "True": l.append('🤐') if "Likes" in columns and df["Likes"] > 0: l.append(f'💕:{df["Likes"]}') if df["T"] in ["model", "space", "dataset"]: if "Trending" in columns and df["Trending"] > 0: l.append(f'trend:{df["Trending"]}') if df["T"] in ["model", "dataset"]: if "DLs" in columns and df["DLs"] > 0: l.append(f'DL:{df["DLs"]}') if "Gated" in columns and df["Gated"] in ["manual", "auto"]: l.append(f'🔑:{df["Gated"]}') if df["T"] == "model": if "Status" in columns: if df["Status"] == "warm": l.append(f'inference:🔥') elif df["Status"] == "cold": l.append(f'inference:🧊') if df["T"] == "space": if "Hardware" in columns and df["Hardware"] in SPACE_HARDWARES and df["Hardware"] != "cpu-basic": l.append(f'{df["Hardware"]}') if "SDK" in columns: l.append(f'{df["SDK"]}') if "Stage" in columns and df["Stage"] in SPACE_STAGES_EMOJI.keys(): l.append(f'{SPACE_STAGES_EMOJI[df["Stage"]]}') if len(l) > 0: id += f"\n({' '.join(l)})" return id def shorten_type(df: pd.DataFrame, shorten=False): if shorten: for k, v in TYPES_SHORT.items(): if df["T"] == k: return v def to_emoji(df: pd.DataFrame, label: str, key: str, emoji: str): if df[label] == key: return f'{df["Emoji"]}{emoji}' if df["Emoji"] else f' {emoji}' else: return df["Emoji"] def apply_emoji_df(df: pd.DataFrame): for label, v in EMOJIS.items(): if label not in df.columns: continue for key, emoji in v.items(): df["Emoji"] = df.apply(to_emoji, axis=1, label=label, key=key, emoji=emoji) return df def format_md_df(df: pd.DataFrame, verbose=False): df["ID"] = df.apply(id_to_md, axis=1, verbose=verbose) df["T"] = df.apply(shorten_type, axis=1, shorten=verbose) return df hide_labels = [l for l in labels if l in self.hide_labels or l not in self.get_show_labels()] df = format_md_df(apply_emoji_df(pd.DataFrame(dflist, columns=labels)), verbose=self.phone_mode) ref_df = df.copy() df = df.drop(hide_labels, axis=1).style.apply(highlight_df, axis=None, df=ref_df) return df def set_hide(self, hide_labels: list): self.hide_labels = hide_labels.copy() def set_filter(self, filter_item1: str, filter1: str): if not filter_item1 and not filter1: self.filter_items = None self.filters = None else: self.filter_items = [filter_item1] self.filters = [filter1] def _do_filter(self): if self.filters is None or self.filter_items is None: self.item_hide_flags = [False] * len(self.item_list) return labels, label_types = self.labels.get() types = dict(zip(labels, label_types)) flags = [] for item in self.item_list: flag = False for i, f in zip(self.filter_items, self.filters): if i not in item.keys(): continue t = types[i] if item[i] == self.labels.get_null_value(t): flag = True break if t in set(["str", "markdown"]): if f in item[i]: flag = False else: flag = True break flags.append(flag) self.item_hide_flags = flags def sort(self, key="Likes"): if len(self.item_list) == 0: raise Exception("No item found.") if key in SORT_PARAM_TO_ITEM.keys(): key = SORT_PARAM_TO_ITEM[key] types = set() for i in self.item_list: if "T" in i.keys(): types.add(i["T"]) if "paper" in types: return if key in ["DLs", "AllDLs"] and ("space" in types or "collection" in types): key = "Likes" if not key in self.labels.get()[0]: key = "Likes" self.item_list, self.item_hide_flags, self.item_info_list = zip(*sorted(zip(self.item_list, self.item_hide_flags, self.item_info_list), key=lambda x: x[0][key], reverse=True)) def followed_by(self, user: str): if not user: return api = HfApi() usernames = set([x.username for x in api.list_user_following(username=user)]) self.item_hide_flags = [True if i["ID"].split("/")[0] not in usernames else is_hide for i, is_hide in zip(self.item_list, self.item_hide_flags)] def get_gr_df(self): df, labels, label_types = self.get() widths = self.labels.get_widths() if self.phone_mode: widths["T"] = "10%" widths["ID"] = "90%" column_widths = [widths[l] for l in labels] if self.phone_mode: labels = None return gr.update(type="pandas", value=df, headers=labels, datatype=label_types, column_widths=column_widths, wrap=True, show_label=False) def get_gr_hide_labels(self): return gr.update(choices=self.labels.get()[0], value=[], visible=True) def get_gr_filter_item(self, filter_item: str=""): labels, label_types = self.labels.get() choices = [s for s, t in zip(labels, label_types) if t in set(["str", "markdown"])] if len(choices) == 0: choices = [""] return gr.update(choices=choices, value=filter_item if filter_item else choices[0], visible=True) def get_gr_filter(self, filter_item: str=""): labels = self.labels.get()[0] if not filter_item or filter_item not in set(labels): return gr.update(choices=[""], value="", visible=True) d = {} for item in self.item_list: if filter_item not in item.keys(): continue v = item[filter_item] if v in d.keys(): d[v] += 1 else: d[v] = 1 return gr.update(choices=[""] + [t[0] for t in sorted(d.items(), key=lambda x : x[1])][:100], value="", visible=True) def search(repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str, gated: str, appr: list[str], size_categories: list, limit: int, hardware: list, stage: list, followed: str, fetch_detail: list, show_labels: list, ui_mode: str, r: HFSearchResult): try: r.search(repo_types, sort, sort_method, filter_str, search_str, author, tags, infer, gated, appr, size_categories, limit, hardware, stage, followed, fetch_detail, show_labels, ui_mode) return r.get_gr_df(), r.get_gr_hide_labels(), r except Exception as e: raise gr.Error(e) def search_ref_repos(repo_id: str, repo_types: list, sort: str, show_labels: list, limit, ui_mode: str, r: HFSearchResult): try: if not repo_id: raise gr.Error("Input Repo ID") r.search_ref_repos(repo_id, repo_types, sort, show_labels, limit, ui_mode) return r.get_gr_df(), r.get_gr_hide_labels(), r except Exception as e: raise gr.Error(e) def search_cols(repo_id: str, sort: str, show_labels: list, repo_limit: int, user_limit: int, ui_mode: str, r: HFSearchResult): try: if not repo_id: raise gr.Error("Input Repo ID or User ID") r.search_collections(repo_id, sort, show_labels, repo_limit, user_limit, ui_mode) return r.get_gr_df(), r.get_gr_hide_labels(), r except Exception as e: raise gr.Error(e) def update_df(hide_labels: list, filter_item1: str, filter1: str, r: HFSearchResult): r.set_hide(hide_labels) r.set_filter(filter_item1, filter1) return r.get_gr_df(), r def update_filter(filter_item1: str, r: HFSearchResult): return r.get_gr_filter_item(filter_item1), r.get_gr_filter(filter_item1), gr.update(visible=True), r