File size: 32,552 Bytes
68eb6f0
 
b53c1d8
 
68eb6f0
 
 
 
 
 
12b1fe6
68eb6f0
 
 
 
 
a9c10db
3a5bca8
 
a9c10db
3a5bca8
a9c10db
68eb6f0
0a426ed
68eb6f0
b53c1d8
 
 
 
 
68eb6f0
 
 
 
 
 
 
f87e288
68eb6f0
 
f87e288
68eb6f0
 
 
b53c1d8
 
 
 
 
 
 
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c10db
 
 
 
 
 
 
 
 
 
 
 
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87e288
68eb6f0
 
 
f87e288
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b1fe6
68eb6f0
 
 
 
12b1fe6
 
 
 
 
 
0a426ed
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c1d8
 
68eb6f0
0a426ed
f87e288
b53c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87e288
b53c1d8
 
 
f87e288
 
 
b53c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
68eb6f0
 
 
12b1fe6
68eb6f0
 
12b1fe6
68eb6f0
 
 
 
 
 
b53c1d8
 
 
 
 
 
68eb6f0
b53c1d8
 
 
68eb6f0
 
 
b53c1d8
 
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c1d8
 
 
 
 
 
 
 
12b1fe6
b53c1d8
68eb6f0
 
a9c10db
 
 
 
 
 
 
 
 
 
 
 
68eb6f0
12b1fe6
68eb6f0
 
12b1fe6
68eb6f0
 
b53c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
68eb6f0
 
 
 
 
 
 
 
12b1fe6
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a426ed
 
68eb6f0
 
 
 
0a426ed
 
 
 
68eb6f0
0a426ed
68eb6f0
 
 
 
 
 
12b1fe6
 
0a426ed
 
 
a9c10db
12b1fe6
 
 
 
0a426ed
12b1fe6
0a426ed
12b1fe6
 
0a426ed
12b1fe6
 
 
0a426ed
12b1fe6
 
 
a9c10db
12b1fe6
 
a9c10db
 
 
0a426ed
a9c10db
f87e288
 
 
 
 
 
 
 
 
 
68eb6f0
12b1fe6
 
0a426ed
68eb6f0
 
12b1fe6
 
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c1d8
 
 
0a426ed
b53c1d8
 
68eb6f0
 
 
12b1fe6
 
 
 
 
 
68eb6f0
 
 
12b1fe6
0a426ed
12b1fe6
f87e288
0a426ed
 
cb05cc3
68eb6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b1fe6
 
68eb6f0
 
12b1fe6
68eb6f0
 
 
 
12b1fe6
68eb6f0
 
12b1fe6
68eb6f0
 
 
a9c10db
 
 
 
 
 
 
 
 
68eb6f0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import spaces
import gradio as gr
from huggingface_hub import HfApi, ModelInfo, DatasetInfo, SpaceInfo, Collection
from huggingface_hub.hf_api import PaperInfo
from typing import Union
import gc
import pandas as pd
import datetime
import json
import re
from hfconstants import DS_SIZE_CATEGORIES, SPACE_HARDWARES, SPACE_STAGES, SPACE_STAGES_EMOJI, EMOJIS

@spaces.GPU
def dummy_gpu():
    pass

TYPES_SHORT = {"model": "M", "dataset": "D", "space": "S", "paper": "P", "collection": "C"}
TYPES_URL = {"model": "https://huggingface.co./models", "dataset": "https://huggingface.co./datasets", "space": "https://huggingface.co./spaces",
             "paper": "https://huggingface.co./papers", "collection": "https://huggingface.co./collections"}

TYPES_DESC = " / ".join([f"[{v}={k}]({TYPES_URL.get(k, 'https://hf.co')})" for k, v in zip(list(TYPES_SHORT.keys()), list(TYPES_SHORT.values()))])

RESULT_ITEMS = {
    "T": [1, "str", True],
    "ID": [2, "markdown", True, "40%"],
    "User": [4, "str", False],
    "Name": [5, "str", False],
    "URL": [6, "str", False],
    "Status": [7, "markdown", True],
    "Gated": [8, "str", True],
    "Likes": [10, "number", True],
    "DLs": [12, "number", True],
    "AllDLs": [13, "number", False],
    "Trending": [16, "number", True],
    "LastMod.": [17, "str", True],
    "Library": [20, "markdown", False],
    "Pipeline": [21, "markdown", True],
    "SDK": [24, "str", False],
    "Hardware": [25, "str", False],
    "Stage": [26, "str", False],
    "Emoji": [35, "str", False],
    "NFAA": [40, "str", False],
}

SORT_PARAM_TO_ITEM = {
    "last_modified": "LastMod.",
    "likes": "Likes",
    "downloads": "DLs",
    "downloads_all_time": "AllDLs",
    "trending_score": "Trending",
}

try:
    with open("tags.json", encoding="utf-8") as f:
        TAGS = json.load(f)
    with open("subtags.json", encoding="utf-8") as f:
        SUBTAGS = json.load(f)
except Exception as e:
    TAGS = []
    SUBTAGS = {}
    print(e)

def get_tags():
    return TAGS[0:1000]

def get_subtag_categories():
    return list(SUBTAGS.keys())

def update_subtag_items(category: str):
    choices=[""] + list(SUBTAGS.get(category, []))
    return gr.update(choices=choices, value=choices[0])

def update_subtags(tags: str, category: str, item: str):
    addtag = f"{category}:{item}" if item else ""
    newtags = f"{tags}\n{addtag}" if tags else addtag
    return newtags

def update_tags(tags: str, item: str):
    newtags = f"{tags}\n{item}" if tags else item
    return newtags

def get_repo_type(repo_id: str):
    try:
        api = HfApi()
        if api.repo_exists(repo_id=repo_id, repo_type="dataset"): return "dataset"
        elif api.repo_exists(repo_id=repo_id, repo_type="space"): return "space"
        elif api.repo_exists(repo_id=repo_id): return "model"
        else: return None
    except Exception as e:
        print(e)
        raise Exception(f"Repo not found: {repo_id} {e}")

def sort_dict(d: dict):
    return dict(sorted(d.items(), key=lambda x: x[1], reverse=True))

def get_repo_likers(repo_id: str, repo_type: str="model"):
    try:
        api = HfApi()
        user_list = []
        users = api.list_repo_likers(repo_id=repo_id, repo_type=repo_type)
        for user in users:
            user_list.append(user.username)
        return user_list
    except Exception as e:
        print(e)
        raise Exception(e)

def get_liked_repos(users: list[str]):
    try:
        api = HfApi()
        likes_dict = {}
        types_dict = {}
        for user in users:
            likes = api.list_liked_repos(user=user)
            for id in likes.models:
                likes_dict[id] = likes_dict.get(id, 1) + 1
                types_dict[id] = "model"
            for id in likes.datasets:
                likes_dict[id] = likes_dict.get(id, 1) + 1
                types_dict[id] = "dataset"
            for id in likes.spaces:
                likes_dict[id] = likes_dict.get(id, 1) + 1
                types_dict[id] = "space"
        likes_dict = sort_dict(likes_dict)
        likes_list = list(likes_dict.keys())
        types_list = [types_dict[x] for x in likes_list]
        counts_list = list(likes_dict.values())
        return likes_list, types_list, counts_list
    except Exception as e:
        print(e)
        raise Exception(e)

def get_repo_collections(repo_id: str, repo_type: str="model", limit=10):
    try:
        api = HfApi()
        if repo_type == "dataset": item = f"datasets/{repo_id}"
        elif repo_type == "space": item = f"spaces/{repo_id}"
        else: item = f"models/{repo_id}"
        cols_dict = {}
        types_dict = {}
        cols = api.list_collections(item=item, sort="upvotes", limit=limit)
        for c in cols:
            col = api.get_collection(collection_slug=c.slug)
            for i in col.items:
                id = i.item_id
                cols_dict[id] = cols_dict.get(id, 1) + 1
                types_dict[id] = i.item_type
        cols_dict = sort_dict(cols_dict)
        cols_list = list(cols_dict.keys())
        types_list = [types_dict[x] for x in cols_list]
        counts_list = list(cols_dict.values())
        return cols_list, types_list, counts_list
    except Exception as e:
        print(e)
        raise Exception(e)

def get_users_collections(users: list[str], limit=10):
    try:
        api = HfApi()
        cols_dict = {}
        types_dict = {}
        for user in users[0:6]:
            cols = api.list_collections(owner=user, sort="upvotes", limit=limit)
            for c in cols:
                col = api.get_collection(collection_slug=c.slug)
                for i in col.items:
                    id = i.item_id
                    cols_dict[id] = cols_dict.get(id, 1) + 1
                    types_dict[id] = i.item_type
        cols_dict = sort_dict(cols_dict)
        cols_list = list(cols_dict.keys())
        types_list = [types_dict[x] for x in cols_list]
        counts_list = list(cols_dict.values())
        return cols_list, types_list, counts_list
    except Exception as e:
        print(e)
        raise Exception(e)

def get_ref_repos(repo_id: str):
    refs = {}
    types = {}
    repo_type = get_repo_type(repo_id)
    likers = get_repo_likers(repo_id, repo_type)[0:10]
    for i, t, c in zip(*get_liked_repos(likers)):
        refs[i] = refs.get(i, 0) + c * 2
        types[i] = t
    for i, t, c in zip(*get_repo_collections(repo_id, repo_type)):
        refs[i] = refs.get(i, 0) + c * 5
        types[i] = t
    refs = sort_dict(refs)
    if repo_id in refs.keys(): refs.pop(repo_id)
    refs_list = list(refs.keys())
    types_list = [types[x] for x in refs_list]
    counts_list = list(refs.values())
    return refs_list, types_list, counts_list

def get_collections_by_repo(repo_id: str, repo_type: str="model", limit=100):
    try:
        api = HfApi()
        if repo_type == "dataset": item = f"datasets/{repo_id}"
        elif repo_type == "space": item = f"spaces/{repo_id}"
        else: item = f"models/{repo_id}"
        cols = api.list_collections(item=item, sort="upvotes", limit=limit)
        return [c for c in cols]
    except Exception as e:
        print(e)
        raise Exception(e)

def get_collections_by_users(users: list[str], limit=100):
    try:
        api = HfApi()
        cols_list = []
        for user in users[0:6]:
            cols = api.list_collections(owner=user, sort="upvotes", limit=limit)
            for col in cols:
                cols_list.append(col)
        return cols_list
    except Exception as e:
        print(e)
        raise Exception(e)

def get_ref_collections(repo_id: str, limit=10):
    try:
        repo_type = get_repo_type(repo_id)
        likers = get_repo_likers(repo_id, repo_type)[0:10]
        cols = get_collections_by_repo(repo_id, repo_type, limit) + get_collections_by_users(likers, limit)
        cols = list({k.slug: k for k in cols}.values())
        return cols
    except Exception as e:
        print(e)
        raise Exception(e)

def get_collections(repo_id: str, repo_limit: int=100, user_limit: int=0):
    try:
        if "/" in repo_id: # Repo ID
            repo_type = get_repo_type(repo_id)
            likers = get_repo_likers(repo_id, repo_type)[0:user_limit+1]
            cols = get_collections_by_repo(repo_id, repo_type, repo_limit) + get_collections_by_users(likers, 50)
        else: cols = get_collections_by_users([repo_id], 50) # User ID
        cols = list({k.slug: k for k in cols}.values())
        return cols
    except Exception as e:
        print(e)
        raise Exception(e)

def str_to_list(s: str):
    try:
        m = re.split("\n", s)
        return [s.strip() for s in list(m)]
    except Exception:
        return []

def is_valid_arg(s: str):
    return len(str_to_list(s)) > 0

def get_labels():
    return list(RESULT_ITEMS.keys())

def get_valid_labels():
    return [k for k in list(RESULT_ITEMS.keys()) if RESULT_ITEMS[k][2]]

def date_to_str(dt: datetime.datetime):
    return dt.strftime('%Y-%m-%d %H:%M')

class Labels():
    VALID_DTYPE = ["str", "number", "bool", "date", "markdown"]

    def __init__(self):
        self.types = {}
        self.orders = {}
        self.widths = {}

    def set(self, label: str):
        if not label in RESULT_ITEMS.keys(): raise Exception(f"Invalid item: {label}")
        item = RESULT_ITEMS.get(label)
        if item[1] not in self.VALID_DTYPE: raise Exception(f"Invalid data type: {type}")
        self.types[label] = item[1]
        self.orders[label] = item[0]
        if len(item) > 3: self.widths[label] = item[3]
        else: self.widths[label] = "10%"
    
    def get(self):
        labels = list(self.types.keys())
        labels.sort(key=lambda x: self.orders[x])
        label_types = [self.types[s] for s in labels]
        return labels, label_types

    def get_widths(self):
        return self.widths.copy()

    def get_null_value(self, type: str):
        if type == "bool": return False
        elif type == "number" or type == "date": return 0 #
        else: return ""

# https://huggingface.co./docs/huggingface_hub/package_reference/hf_api
# https://huggingface.co./docs/huggingface_hub/package_reference/hf_api#huggingface_hub.ModelInfo
class HFSearchResult():
    def __init__(self):
        self.labels = Labels()
        self.current_item = {}
        self.current_item_info = None
        self.item_list = []
        self.item_info_list = []
        self.item_hide_flags = []
        self.hide_labels = []
        self.show_labels = []
        self.filter_items = None
        self.filters = None
        self.phone_mode = True #
        gc.collect()
    
    def reset(self):
        self.__init__()
    
    def set_mode(self, mode: str):
        if mode == "Phone": self.phone_mode = True
        elif mode == "PC": self.phone_mode = False
    
    def get_show_labels(self):
        return ["T", "ID"] if self.phone_mode else self.show_labels

    def _set(self, data, label: str):
        self.labels.set(label)
        self.current_item[label] = data

    def _next(self):
        self.item_list.append(self.current_item.copy())
        self.current_item = {}
        self.item_info_list.append(self.current_item_info)
        self.current_item_info = None
        self.item_hide_flags.append(False)

    def add_item(self, i: Union[ModelInfo, DatasetInfo, SpaceInfo]):
        self.current_item_info = i
        if isinstance(i, ModelInfo): type = "model"
        elif isinstance(i, DatasetInfo): type = "dataset"
        elif isinstance(i, SpaceInfo): type = "space"
        elif isinstance(i, PaperInfo): type = "paper"
        elif isinstance(i, Collection): type = "collection"
        else: return
        self._set(type, "T")
        self._set("", "Emoji")
        if type in ["space", "model", "dataset"]:
            self._set(i.id, "ID")
            self._set(i.id.split("/")[0], "User")
            self._set(i.id.split("/")[1], "Name")
            if type == "dataset": self._set(f"https://hf.co/datasets/{i.id}", "URL")
            elif type == "space": self._set(f"https://hf.co/spaces/{i.id}", "URL")
            else: self._set(f"https://hf.co/{i.id}", "URL")
            if i.likes is not None: self._set(i.likes, "Likes")
            if i.last_modified is not None: self._set(date_to_str(i.last_modified), "LastMod.")
            if i.trending_score is not None: self._set(int(i.trending_score), "Trending")
            if i.tags is not None: self._set("True" if "not-for-all-audiences" in i.tags else "False", "NFAA")
            if type in ["model", "dataset"]:
                if i.gated is not None: self._set(i.gated if i.gated else "off", "Gated")
                if i.downloads is not None: self._set(i.downloads, "DLs")
                if i.downloads_all_time is not None: self._set(i.downloads_all_time, "AllDLs")
            if type == "model":
                if i.inference is not None: self._set(i.inference, "Status")
                if i.library_name is not None: self._set(i.library_name, "Library")
                if i.pipeline_tag is not None: self._set(i.pipeline_tag, "Pipeline")
            if type == "space":
                if i.sdk is not None: self._set(i.sdk, "SDK")
                if i.runtime is not None:
                    self._set(i.runtime.hardware, "Hardware")
                    self._set(i.runtime.stage, "Stage")
                if i.card_data is not None:
                    card = i.card_data
                    if card.title is not None: self._set(card.title, "Name")
        elif type == "paper": # https://github.com/huggingface/huggingface_hub/blob/v0.27.0/src/huggingface_hub/hf_api.py#L1428
            self._set(i.id, "ID")
            self._set(f"https://hf.co/papers/{i.id}", "URL")
            if i.submitted_by is not None: self._set(i.submitted_by, "User")
            if i.title is not None: self._set(i.title, "Name")
            if i.submitted_at is not None: self._set(date_to_str(i.submitted_at), "LastMod.")
            if i.upvotes is not None: self._set(i.upvotes, "Likes")
        elif type == "collection":
            self._set(i.slug, "ID")
            if i.owner is not None: self._set(i.owner["name"], "User")
            if i.title is not None: self._set(i.title, "Name")
            if i.last_updated is not None: self._set(date_to_str(i.last_updated), "LastMod.")
            if i.upvotes is not None: self._set(i.upvotes, "Likes")
            if i.url is not None: self._set(i.url, "URL")
        self._next()

    def search(self, repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str, gated: str, appr: list[str],

               size_categories: list, limit: int, hardware: list, stage: list, followed: str, fetch_detail: list, show_labels: list, ui_mode="PC"):
        try:
            self.reset()
            self.set_mode(ui_mode)
            self.show_labels = show_labels.copy()
            api = HfApi()
            kwargs = {}
            mkwargs = {}
            dkwargs = {}
            skwargs = {}
            ckwargs = {}
            pkwargs = {}
            if filter_str:
                kwargs["filter"] = str_to_list(filter_str)
                ckwargs["item"] = str_to_list(filter_str)
                pkwargs["query"] = str_to_list(filter_str)
            if search_str: kwargs["search"] = search_str
            if author:
                kwargs["author"] = author
                ckwargs["owner"] = author
            if tags and is_valid_arg(tags):
                mkwargs["tags"] = str_to_list(tags)
                dkwargs["tags"] = str_to_list(tags)
            if limit > 0:
                kwargs["limit"] = limit
                ckwargs["limit"] = 100 if limit > 100 else limit
            if sort_method == "descending order": kwargs["direction"] = -1
            if gated == "gated":
                mkwargs["gated"] = True
                dkwargs["gated"] = True
            elif gated == "non-gated":
                mkwargs["gated"] = False
                dkwargs["gated"] = False
            mkwargs["sort"] = sort
            if len(size_categories) > 0: dkwargs["size_categories"] = size_categories
            if infer != "all": mkwargs["inference"] = infer
            if "model" in repo_types:
                models = api.list_models(full=True, cardData=True, **kwargs, **mkwargs)
                for model in models:
                    if model.gated is not None and model.gated and model.gated not in appr: continue
                    self.add_item(model)
            if "dataset" in repo_types:
                datasets = api.list_datasets(full=True, **kwargs, **dkwargs)
                for dataset in datasets:
                    if dataset.gated is not None and dataset.gated and dataset.gated not in appr: continue
                    self.add_item(dataset)
            if "space" in repo_types:
                if "Space Runtime" in fetch_detail:
                    spaces = api.list_spaces(expand=["cardData", "datasets", "disabled", "lastModified", "createdAt",
                                                     "likes", "models", "private", "runtime", "sdk", "sha", "tags", "trendingScore"], **kwargs, **skwargs)
                else: spaces = api.list_spaces(full=True, **kwargs, **skwargs)
                for space in spaces:
                    if space.gated is not None and space.gated and space.gated not in appr: continue
                    if space.runtime is not None:
                         if len(hardware) > 0 and space.runtime.stage == "RUNNING" and space.runtime.hardware not in hardware: continue
                         if len(stage) > 0 and space.runtime.stage not in stage: continue
                    self.add_item(space)
            if "paper" in repo_types:
                papers = api.list_papers(**pkwargs)
                for paper in papers:
                    self.add_item(paper)
            if "collection" in repo_types:
                cols = api.list_collections(**ckwargs)
                for col in cols:
                    self.add_item(col)
            if followed: self.followed_by(followed)
            self.sort(sort)
        except Exception as e:
            raise Exception(f"Search error: {e}") from e
        
    def search_collections(self, repo_id: str, sort: str, show_labels: list, repo_limit: int=100, user_limit: int=0, ui_mode="PC"):
        try:
            self.reset()
            self.set_mode(ui_mode)
            self.show_labels = show_labels.copy()
            cols = get_collections(repo_id, repo_limit, user_limit)
            for col in cols:
                self.add_item(col)
            self.sort(sort)
        except Exception as e:
            raise Exception(f"Search error: {e}") from e

    def search_ref_repos(self, repo_id: str, repo_types: str, sort: str, show_labels: list, limit=10, ui_mode="PC"):
        try:
            self.reset()
            self.set_mode(ui_mode)
            self.show_labels = show_labels.copy()
            api = HfApi()
            if "model" in repo_types or "dataset" in repo_types or "space" in repo_types or "paper" in repo_types:
                repos, types, counts = get_ref_repos(repo_id)
                i = 0
                for r, t in zip(repos, types):
                    if i + 1 > limit: break
                    i += 1
                    if t not in repo_types: continue
                    info = api.repo_info(repo_id=r, repo_type=t)
                    if info: self.add_item(info)
            if "collection" in repo_types:
                cols = get_ref_collections(repo_id, limit)
                for col in cols:
                    self.add_item(col)
            self.sort(sort)
        except Exception as e:
            raise Exception(f"Search error: {e}") from e
    
    def get(self):
        labels, label_types = self.labels.get()
        self._do_filter()
        dflist = [[item.get(l, self.labels.get_null_value(t)) for l, t in zip(labels, label_types)] for item, is_hide in zip(self.item_list, self.item_hide_flags) if not is_hide]
        df = self._to_pandas(dflist, labels)
        show_label_types = [t for l, t in zip(labels, label_types) if l not in self.hide_labels and l in self.get_show_labels()]
        show_labels = [l for l in labels if l not in self.hide_labels and l in self.get_show_labels()]
        return df, show_labels, show_label_types

    def _to_pandas(self, dflist: list, labels: list):
        # https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.apply.html
        # https://stackoverflow.com/questions/41654949/pandas-style-function-to-highlight-specific-columns
        # https://stackoverflow.com/questions/69832206/pandas-styling-with-conditional-rules
        # https://stackoverflow.com/questions/41203959/conditionally-format-python-pandas-cell
        # https://stackoverflow.com/questions/51187868/how-do-i-remove-and-re-sort-reindex-columns-after-applying-style-in-python-pan
        # https://stackoverflow.com/questions/36921951/truth-value-of-a-series-is-ambiguous-use-a-empty-a-bool-a-item-a-any-o
        def rank_df(sdf: pd.DataFrame, df: pd.DataFrame, col: str):
            ranks = [(0.5, "gold"), (0.75, "orange"), (0.9, "orangered")]
            for t, color in ranks:
                sdf.loc[df[col] >= df[col].quantile(q=t), [col]] = f'color: {color}'
            return sdf

        def highlight_df(x: pd.DataFrame, df: pd.DataFrame):
            sdf = pd.DataFrame("", index=x.copy().index, columns=x.copy().columns)
            columns = df.columns
            if "Trending" in columns: sdf = rank_df(sdf, df, "Trending")
            if "Likes" in columns: sdf = rank_df(sdf, df, "Likes")
            if "AllDLs" in columns: sdf = rank_df(sdf, df, "AllDLs")
            if "DLs" in columns: sdf = rank_df(sdf, df, "DLs")
            if "Status" in columns:
                sdf.loc[df["Status"] == "warm", ["T", "Status"]] = 'color: orange'
                sdf.loc[df["Status"] == "cold", ["T", "Status"]] = 'color: dodgerblue'
            if "Gated" in columns:
                sdf.loc[df["Gated"] == "auto", ["Gated"]] = 'color: dodgerblue'
                sdf.loc[df["Gated"] == "manual", ["Gated"]] = 'color: crimson'
            if "Stage" in columns and "Hardware" in columns:
                sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] != "zero-a10g") & (df["Hardware"] != "cpu-basic") & (df["Hardware"]), ["Hardware", "T"]] = 'color: lime'
                sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] == "zero-a10g"), ["Hardware", "T"]] = 'color: limegreen'
                sdf.loc[(df["T"] == "space") & (df["Stage"] != "RUNNING")] = 'opacity: 0.5'
                sdf.loc[(df["T"] == "space") & (df["Stage"] != "RUNNING"), ["T"]] = 'color: crimson'
                sdf.loc[df["Stage"] == "RUNNING", ["Stage"]] = 'color: lime'
            if "NFAA" in columns: sdf.loc[df["NFAA"] == "True", ["T"]] = 'background-color: hotpink'
            show_columns = x.copy().columns
            style_columns = sdf.columns
            drop_columns = [c for c in style_columns if c not in show_columns]
            sdf = sdf.drop(drop_columns, axis=1)
            return sdf
        
        def id_to_md(df: pd.DataFrame, verbose=False):
            columns = list(df.index)
            if df["T"] == "collection": id = f'### [{df["User"]}/{df["Name"]}]({df["URL"]}){df["Emoji"]}'
            elif df["T"] == "space": id = f'### [{df["Name"]} ({df["ID"]})]({df["URL"]}){df["Emoji"]}'
            elif df["T"] == "paper": id = f'### [{df["Name"]} (arxiv:{df["ID"]})]({df["URL"]}){df["Emoji"]}'
            else: id = f'### [{df["ID"]}]({df["URL"]}){df["Emoji"]}'
            if verbose:
                l = []
                if "NFAA" in columns and df["NFAA"] == "True": l.append('🀐')
                if "Likes" in columns and df["Likes"] > 0: l.append(f'πŸ’•:{df["Likes"]}')
                if df["T"] in ["model", "space", "dataset"]:
                    if "Trending" in columns and df["Trending"] > 0: l.append(f'trend:{df["Trending"]}')
                    if df["T"] in ["model", "dataset"]:
                        if "DLs" in columns and df["DLs"] > 0: l.append(f'DL:{df["DLs"]}')
                        if "Gated" in columns and df["Gated"] in ["manual", "auto"]: l.append(f'πŸ”‘:{df["Gated"]}')
                    if df["T"] == "model":
                        if "Status" in columns:
                            if df["Status"] == "warm": l.append(f'inference:πŸ”₯')
                            elif df["Status"] == "cold": l.append(f'inference:🧊')
                    if df["T"] == "space":
                        if "Hardware" in columns and df["Hardware"] in SPACE_HARDWARES and df["Hardware"] != "cpu-basic": l.append(f'{df["Hardware"]}')
                        if "SDK" in columns: l.append(f'{df["SDK"]}')
                        if "Stage" in columns and df["Stage"] in SPACE_STAGES_EMOJI.keys(): l.append(f'{SPACE_STAGES_EMOJI[df["Stage"]]}')
                if len(l) > 0: id += f"\n({' '.join(l)})"
            return id

        def shorten_type(df: pd.DataFrame, shorten=False):
            if shorten:
                for k, v in TYPES_SHORT.items():
                    if df["T"] == k: return v

        def to_emoji(df: pd.DataFrame, label: str, key: str, emoji: str):
            if df[label] == key: return f'{df["Emoji"]}{emoji}' if df["Emoji"] else f' {emoji}'
            else: return df["Emoji"]
        
        def apply_emoji_df(df: pd.DataFrame):
            for label, v in EMOJIS.items():
                if label not in df.columns: continue
                for key, emoji in v.items():
                    df["Emoji"] = df.apply(to_emoji, axis=1, label=label, key=key, emoji=emoji)
            return df

        def format_md_df(df: pd.DataFrame, verbose=False):
            df["ID"] = df.apply(id_to_md, axis=1, verbose=verbose)
            df["T"] = df.apply(shorten_type, axis=1, shorten=verbose)
            return df
        
        hide_labels = [l for l in labels if l in self.hide_labels or l not in self.get_show_labels()]
        df = format_md_df(apply_emoji_df(pd.DataFrame(dflist, columns=labels)), verbose=self.phone_mode)
        ref_df = df.copy()
        df = df.drop(hide_labels, axis=1).style.apply(highlight_df, axis=None, df=ref_df)
        return df

    def set_hide(self, hide_labels: list):
        self.hide_labels = hide_labels.copy()

    def set_filter(self, filter_item1: str, filter1: str):
        if not filter_item1 and not filter1:
            self.filter_items = None
            self.filters = None
        else:
            self.filter_items = [filter_item1]
            self.filters = [filter1]
        
    def _do_filter(self):
        if self.filters is None or self.filter_items is None:
            self.item_hide_flags = [False] * len(self.item_list)
            return
        labels, label_types = self.labels.get()
        types = dict(zip(labels, label_types))
        flags = []
        for item in self.item_list:
            flag = False
            for i, f in zip(self.filter_items, self.filters):
                if i not in item.keys(): continue
                t = types[i]
                if item[i] == self.labels.get_null_value(t):
                    flag = True
                    break
                if t in set(["str", "markdown"]):
                    if f in item[i]: flag = False
                    else:
                        flag = True
                        break
            flags.append(flag)
        self.item_hide_flags = flags

    def sort(self, key="Likes"):
        if len(self.item_list) == 0: raise Exception("No item found.")
        if key in SORT_PARAM_TO_ITEM.keys(): key = SORT_PARAM_TO_ITEM[key]
        types = set()
        for i in self.item_list:
            if "T" in i.keys(): types.add(i["T"])
        if "paper" in types: return
        if key in ["DLs", "AllDLs"] and ("space" in types or "collection" in types): key = "Likes"
        if not key in self.labels.get()[0]: key = "Likes"
        self.item_list, self.item_hide_flags, self.item_info_list = zip(*sorted(zip(self.item_list, self.item_hide_flags, self.item_info_list), key=lambda x: x[0][key], reverse=True))

    def followed_by(self, user: str):
        if not user: return
        api = HfApi()
        usernames = set([x.username for x in api.list_user_following(username=user)])
        self.item_hide_flags = [True if i["ID"].split("/")[0] not in usernames else is_hide for i, is_hide in zip(self.item_list, self.item_hide_flags)]

    def get_gr_df(self):
        df, labels, label_types = self.get()
        widths = self.labels.get_widths()
        if self.phone_mode:
            widths["T"] = "10%"
            widths["ID"] = "90%"
        column_widths = [widths[l] for l in labels]
        if self.phone_mode:
            labels = None
        return gr.update(type="pandas", value=df, headers=labels, datatype=label_types, column_widths=column_widths, wrap=True, show_label=False)

    def get_gr_hide_labels(self):
        return gr.update(choices=self.labels.get()[0], value=[], visible=True)

    def get_gr_filter_item(self, filter_item: str=""):
        labels, label_types = self.labels.get()
        choices = [s for s, t in zip(labels, label_types) if t in set(["str", "markdown"])]
        if len(choices) == 0: choices = [""]
        return gr.update(choices=choices, value=filter_item if filter_item else choices[0], visible=True)
    
    def get_gr_filter(self, filter_item: str=""):
        labels = self.labels.get()[0]
        if not filter_item or filter_item not in set(labels): return gr.update(choices=[""], value="", visible=True)
        d = {}
        for item in self.item_list:
            if filter_item not in item.keys(): continue
            v = item[filter_item]
            if v in d.keys(): d[v] += 1
            else: d[v] = 1
        return gr.update(choices=[""] + [t[0] for t in sorted(d.items(), key=lambda x : x[1])][:100], value="", visible=True)

def search(repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str,

           gated: str, appr: list[str], size_categories: list, limit: int, hardware: list, stage: list, followed: str,

           fetch_detail: list, show_labels: list, ui_mode: str, r: HFSearchResult):
    try:
        r.search(repo_types, sort, sort_method, filter_str, search_str, author, tags, infer, gated, appr, size_categories,
                 limit, hardware, stage, followed, fetch_detail, show_labels, ui_mode)
        return r.get_gr_df(), r.get_gr_hide_labels(), r
    except Exception as e:
        raise gr.Error(e)

def search_ref_repos(repo_id: str, repo_types: list, sort: str, show_labels: list, limit, ui_mode: str, r: HFSearchResult):
    try:
        if not repo_id: raise gr.Error("Input Repo ID")
        r.search_ref_repos(repo_id, repo_types, sort, show_labels, limit, ui_mode)
        return r.get_gr_df(), r.get_gr_hide_labels(), r
    except Exception as e:
        raise gr.Error(e)

def search_cols(repo_id: str, sort: str, show_labels: list, repo_limit: int, user_limit: int, ui_mode: str, r: HFSearchResult):
    try:
        if not repo_id: raise gr.Error("Input Repo ID or User ID")
        r.search_collections(repo_id, sort, show_labels, repo_limit, user_limit, ui_mode)
        return r.get_gr_df(), r.get_gr_hide_labels(), r
    except Exception as e:
        raise gr.Error(e)

def update_df(hide_labels: list, filter_item1: str, filter1: str, r: HFSearchResult):
    r.set_hide(hide_labels)
    r.set_filter(filter_item1, filter1)
    return r.get_gr_df(), r

def update_filter(filter_item1: str, r: HFSearchResult):
    return r.get_gr_filter_item(filter_item1), r.get_gr_filter(filter_item1), gr.update(visible=True), r