Update app.py
Browse files
app.py
CHANGED
@@ -20,8 +20,21 @@ def retrieve_embedding(user_query):
|
|
20 |
headers = {
|
21 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
22 |
}
|
|
|
|
|
23 |
response = requests.post(f"{GROQ_API_URL}/embedding", json=payload, headers=headers)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Function to perform response generation using FLAN-T5 via Groq API
|
27 |
def generate_response(context):
|
@@ -32,8 +45,21 @@ def generate_response(context):
|
|
32 |
headers = {
|
33 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
34 |
}
|
|
|
|
|
35 |
response = requests.post(f"{GROQ_API_URL}/generate", json=payload, headers=headers)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Load the counseling conversations dataset
|
39 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
@@ -43,8 +69,9 @@ dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
|
43 |
def embed_dataset(_dataset):
|
44 |
embeddings = []
|
45 |
for entry in _dataset:
|
46 |
-
embedding = retrieve_embedding(entry["
|
47 |
-
|
|
|
48 |
return embeddings
|
49 |
|
50 |
dataset_embeddings = embed_dataset(dataset)
|
@@ -52,12 +79,16 @@ dataset_embeddings = embed_dataset(dataset)
|
|
52 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
53 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
54 |
query_embedding = retrieve_embedding(user_query)
|
|
|
|
|
|
|
|
|
55 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|
56 |
top_indices = np.argsort(cos_scores)[-k:][::-1]
|
57 |
|
58 |
retrieved_responses = []
|
59 |
for idx in top_indices:
|
60 |
-
retrieved_responses.append(dataset[idx]["
|
61 |
return retrieved_responses
|
62 |
|
63 |
# Streamlit app UI
|
@@ -71,11 +102,17 @@ if user_query:
|
|
71 |
# Retrieve similar responses from the dataset
|
72 |
retrieved_responses = retrieve_response(user_query, dataset, dataset_embeddings)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
headers = {
|
21 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
22 |
}
|
23 |
+
|
24 |
+
# Make the API request
|
25 |
response = requests.post(f"{GROQ_API_URL}/embedding", json=payload, headers=headers)
|
26 |
+
|
27 |
+
# Check for errors and return the embedding if available
|
28 |
+
if response.status_code == 200:
|
29 |
+
json_response = response.json()
|
30 |
+
if "embedding" in json_response:
|
31 |
+
return json_response["embedding"]
|
32 |
+
else:
|
33 |
+
st.error("The response from the API did not contain an embedding. Please check the API.")
|
34 |
+
return None
|
35 |
+
else:
|
36 |
+
st.error(f"Failed to retrieve embedding. Status code: {response.status_code}")
|
37 |
+
return None
|
38 |
|
39 |
# Function to perform response generation using FLAN-T5 via Groq API
|
40 |
def generate_response(context):
|
|
|
45 |
headers = {
|
46 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
47 |
}
|
48 |
+
|
49 |
+
# Make the API request
|
50 |
response = requests.post(f"{GROQ_API_URL}/generate", json=payload, headers=headers)
|
51 |
+
|
52 |
+
# Check for errors and return the response text if available
|
53 |
+
if response.status_code == 200:
|
54 |
+
json_response = response.json()
|
55 |
+
if "text" in json_response:
|
56 |
+
return json_response["text"]
|
57 |
+
else:
|
58 |
+
st.error("The response from the API did not contain a 'text' key.")
|
59 |
+
return None
|
60 |
+
else:
|
61 |
+
st.error(f"Failed to generate response. Status code: {response.status_code}")
|
62 |
+
return None
|
63 |
|
64 |
# Load the counseling conversations dataset
|
65 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
|
|
69 |
def embed_dataset(_dataset):
|
70 |
embeddings = []
|
71 |
for entry in _dataset:
|
72 |
+
embedding = retrieve_embedding(entry["response"])
|
73 |
+
if embedding is not None:
|
74 |
+
embeddings.append(embedding)
|
75 |
return embeddings
|
76 |
|
77 |
dataset_embeddings = embed_dataset(dataset)
|
|
|
79 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
80 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
81 |
query_embedding = retrieve_embedding(user_query)
|
82 |
+
if query_embedding is None:
|
83 |
+
st.error("Could not retrieve an embedding for the query.")
|
84 |
+
return []
|
85 |
+
|
86 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|
87 |
top_indices = np.argsort(cos_scores)[-k:][::-1]
|
88 |
|
89 |
retrieved_responses = []
|
90 |
for idx in top_indices:
|
91 |
+
retrieved_responses.append(dataset[idx]["response"])
|
92 |
return retrieved_responses
|
93 |
|
94 |
# Streamlit app UI
|
|
|
102 |
# Retrieve similar responses from the dataset
|
103 |
retrieved_responses = retrieve_response(user_query, dataset, dataset_embeddings)
|
104 |
|
105 |
+
if retrieved_responses:
|
106 |
+
# Join retrieved responses to create a supportive context
|
107 |
+
context = " ".join(retrieved_responses)
|
108 |
+
|
109 |
+
# Generate a supportive response using FLAN-T5 via Groq API
|
110 |
+
supportive_response = generate_response(context)
|
111 |
+
|
112 |
+
if supportive_response:
|
113 |
+
st.write("Here's some advice or support for you:")
|
114 |
+
st.write(supportive_response)
|
115 |
+
else:
|
116 |
+
st.write("Sorry, I couldn't generate a response at the moment.")
|
117 |
+
else:
|
118 |
+
st.write("Sorry, I couldn't find any relevant responses.")
|