Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import functools | |
from torchvision.transforms.functional import normalize | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from briarmbg import BriaRMBG | |
import PIL | |
from PIL import Image | |
from typing import Tuple | |
import requests | |
from io import BytesIO | |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net.to(device) | |
def get_url_im(url): | |
user_agent = {'User-agent': 'gradio-app'} | |
response = requests.get(url, headers=user_agent) | |
return BytesIO(response.content) | |
def resize_image(image_url): | |
image_data = get_url_im(image_url) | |
image = Image.open(image_data) | |
image = image.convert('RGB') | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def process(image_url): | |
# prepare input | |
orig_image = resize_image(image_url) | |
w, h = orig_im_size = orig_image.size | |
im_np = np.array(orig_image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
# inference | |
result = net(im_tensor) | |
# post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
# image to pil | |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
# paste the mask on the original image | |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return new_im | |
iface = gr.Interface( | |
fn=process, | |
inputs=gr.Textbox(label="Text or Image URL"), | |
outputs=gr.Image(type="pil", label="Output Image"), | |
) | |
iface.launch() |