Spaces:
Sleeping
Sleeping
from transformers import AutoProcessor, SeamlessM4Tv2Model | |
import torchaudio | |
import soundfile as sf | |
# Initialize the processor and model | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
# Text to audio conversion | |
text_inputs = processor(text="Hello, my dog is cute", src_lang="eng", return_tensors="pt") | |
audio_array_from_text = model.generate(**text_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze() | |
# Save the audio generated from text | |
sf.write('audio_from_text.wav', audio_array_from_text, 16000) # 16000 is the sampling rate | |
# Audio to audio conversion | |
audio, orig_freq = torchaudio.load("https://www2.cs.uic.edu/~i101/SoundFiles/preamble10.wav") | |
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16000) # Resample to 16 kHz | |
audio_inputs = processor(audios=audio, return_tensors="pt") | |
audio_array_from_audio = model.generate(**audio_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze() | |
# Save the audio generated from another audio | |
sf.write('audio_from_audio.wav', audio_array_from_audio, 16000) # 16000 is the sampling rate | |