Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoProcessor, SeamlessM4Tv2Model | |
import torchaudio | |
import soundfile as sf | |
import torch | |
import os | |
language_map = { | |
"Modern Standard Arabic": "arb", "Bengali": "ben", "Catalan": "cat", | |
"Czech": "ces", "Mandarin Chinese": "cmn", "Welsh": "cym", | |
"Danish": "dan", "German": "deu", "English": "eng", | |
"Estonian": "est", "Finnish": "fin", "French": "fra", | |
"Hindi": "hin", "Indonesian": "ind", "Italian": "ita", | |
"Japanese": "jpn", "Kannada": "kan", "Korean": "kor", | |
"Maltese": "mlt", "Dutch": "nld", "Western Persian": "pes", | |
"Polish": "pol", "Portuguese": "por", "Romanian": "ron", | |
"Russian": "rus", "Slovak": "slk", "Spanish": "spa", | |
"Swedish": "swe", "Swahili": "swh", "Tamil": "tam", | |
"Telugu": "tel", "Tagalog": "tgl", "Thai": "tha", | |
"Turkish": "tur", "Ukrainian": "ukr", "Urdu": "urd", | |
"Northern Uzbek": "uzn", "Vietnamese": "vie" | |
} | |
# Check if CUDA (GPU support) is available and set the device accordingly | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Function to load and cache the model and processor | |
def load_model_and_processor(): | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
model.to(device) | |
return processor, model | |
processor, model = load_model_and_processor() | |
# Streamlit app layout | |
st.title("Sarvm Audio Search") | |
# Sidebar components | |
st.sidebar.header("Input Settings") | |
input_text = st.sidebar.text_input("Enter text for conversion:", "Hello, my dog is cute") | |
selected_language_name = st.sidebar.selectbox("Select Target Language:", list(language_map.keys())) | |
selected_language_code = language_map[selected_language_name] | |
# Function to convert text to audio and save | |
def text_to_audio(text, language): | |
text_inputs = processor(text=text, src_lang="eng", return_tensors="pt").to(device) | |
audio_array = model.generate(**text_inputs, tgt_lang=language)[0].cpu().numpy().squeeze() | |
file_path = 'audio_from_text.wav' | |
sf.write(file_path, audio_array, 16000) | |
return file_path | |
# Function to convert audio to audio and save | |
def audio_to_audio(input_audio_path, language): | |
audio, orig_freq = torchaudio.load(input_audio_path) | |
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16000).to(device) | |
audio_inputs = processor(audios=audio, return_tensors="pt").to(device) | |
audio_array = model.generate(**audio_inputs, tgt_lang=language)[0].cpu().numpy().squeeze() | |
file_path = 'audio_from_audio.wav' | |
sf.write(file_path, audio_array, 16000) | |
return file_path | |
# UI to trigger text-to-audio conversion | |
if st.sidebar.button("Convert Text to Audio"): | |
with st.spinner("Converting..."): | |
audio_path = text_to_audio(input_text, selected_language_code) | |
st.audio(audio_path) | |
# UI to upload audio file and trigger audio-to-audio conversion | |
uploaded_audio = st.sidebar.file_uploader("Upload audio for conversion:", type=["wav"]) | |
if uploaded_audio is not None and st.button("Convert Uploaded Audio"): | |
with st.spinner("Converting..."): | |
audio_file_path = f"temp_{uploaded_audio.name}" | |
with open(audio_file_path, "wb") as f: | |
f.write(uploaded_audio.getvalue()) | |
converted_audio_path = audio_to_audio(audio_file_path, selected_language_code) | |
st.audio(converted_audio_path) | |
os.remove(audio_file_path) |