# -*- coding: utf-8 -*- """bg_removersarvm.ipynbdfdfdfldfdfd Automatically generated by Colaboratory.dsds fdfdfd Original file is located at https://colab.research.google.com/drive/17ZfqfkhZV5xSwXdHblThSQM_Yna-0J22d """ import cv2 import gradio as gr import os import functools from PIL import Image from rembg import remove from io import BytesIO import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F import gdown import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") import requests os.system("git config --global --unset https.proxy") os.system("git clone https://github.com/xuebinqin/DIS") os.system("mv DIS/IS-Net/* .") # project imports from data_loader_cache import normalize, im_reader, im_preprocess from models import * #Helpers device = 'cuda' if torch.cuda.is_available() else 'cpu' # Download official weights if not os.path.exists("saved_models"): os.mkdir("saved_models") os.system("mv isnet.pth saved_models/") class GOSNormalize(object): ''' Normalize the Image using torch.transforms fdf ''' def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self,image): image = normalize(image,self.mean,self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) @functools.lru_cache() def get_url_im(url): user_agent = {'User-agent': 'gradio-app'} response = requests.get(url, headers=user_agent) return BytesIO(response.content) def load_image(im_path, hypar): im_path = get_url_im(im_path) im = Image.open(im_path) im = im.convert("RGB") # Convert image to RGB im, im_shp = im_preprocess(np.array(im), hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar,device): net = hypar["model"]#GOSNETINC(3,1) # convert to half precision if(hypar["model_digit"]=="half"): net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if(hypar["restore_model"]!=""): net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): ''' Given an Image, predict the mask ''' net.eval() if(hypar["model_digit"]=="full"): inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable ds_val = net(inputs_val_v)[0] # list of 6 results pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction ## recover the prediction spatial size to the orignal image size pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) # max = 1 if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need # Set Parameters hypar = {} # paramters for inferencing hypar["model_path"] ="./saved_models" ## load trained weights from this path hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision ## choose floating point accuracy -- hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number hypar["seed"] = 0 hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size ## data augmentation parameters --- hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation hypar["model"] = ISNetDIS() # Build Model net = build_model(hypar, device) def inference(image): image_path = image image_tensor, orig_size = load_image(image_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) pil_mask = Image.fromarray(mask).convert('L') im_rgb = Image.open(get_url_im(image)).convert("RGBA") imrgba2 = remove(im_rgb.copy(), 210) im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) return im_rgba, imrgba2, im_rgba title = "Bg remover for SarvM catalog" description = "Bg remover for SarvM catalog" article = "