Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""DIS.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1MI9utM7GJbz0w_zw1GJNU-ay15SzZHIN | |
# Clone official repo | |
""" | |
# Commented out IPython magic to ensure Python compatibility. | |
! git clone https://github.com/xuebinqin/DIS | |
# %cd ./DIS/IS-Net | |
!pip install gdown | |
!mkdir ./saved_models | |
"""# Imports""" | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torch.autograd import Variable | |
from torchvision import transforms | |
import torch.nn.functional as F | |
import gdown | |
import os | |
import requests | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
# project imports | |
from data_loader_cache import normalize, im_reader, im_preprocess | |
from models import * | |
"""# Helpers""" | |
drive_link = "https://drive.google.com/uc?id=1XHIzgTzY5BQHw140EDIgwIb53K659ENH" | |
# Specify the local path and filename | |
local_path = "/content/DIS/IS-Net/saved_models/isnet.pth" | |
# Download the file | |
gdown.download(drive_link, local_path, quiet=False) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Download official weights | |
class GOSNormalize(object): | |
''' | |
Normalize the Image using torch.transforms | |
''' | |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
self.mean = mean | |
self.std = std | |
def __call__(self,image): | |
image = normalize(image,self.mean,self.std) | |
return image | |
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
def load_image(im_path, hypar): | |
if im_path.startswith("http"): | |
im_path = BytesIO(requests.get(im_path).content) | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
im = torch.divide(im,255.0) | |
shape = torch.from_numpy(np.array(im_shp)) | |
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape | |
def build_model(hypar,device): | |
net = hypar["model"]#GOSNETINC(3,1) | |
# convert to half precision | |
if(hypar["model_digit"]=="half"): | |
net.half() | |
for layer in net.modules(): | |
if isinstance(layer, nn.BatchNorm2d): | |
layer.float() | |
net.to(device) | |
if(hypar["restore_model"]!=""): | |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device)) | |
net.to(device) | |
net.eval() | |
return net | |
def predict(net, inputs_val, shapes_val, hypar, device): | |
''' | |
Given an Image, predict the mask | |
''' | |
net.eval() | |
if(hypar["model_digit"]=="full"): | |
inputs_val = inputs_val.type(torch.FloatTensor) | |
else: | |
inputs_val = inputs_val.type(torch.HalfTensor) | |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable | |
ds_val = net(inputs_val_v)[0] # list of 6 results | |
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction | |
## recover the prediction spatial size to the orignal image size | |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
ma = torch.max(pred_val) | |
mi = torch.min(pred_val) | |
pred_val = (pred_val-mi)/(ma-mi) # max = 1 | |
if device == 'cuda': torch.cuda.empty_cache() | |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need | |
"""# Set Parameters""" | |
hypar = {} # paramters for inferencing | |
hypar["model_path"] ="./saved_models" ## load trained weights from this path | |
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights | |
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision | |
## choose floating point accuracy -- | |
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number | |
hypar["seed"] = 0 | |
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size | |
## data augmentation parameters --- | |
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images | |
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation | |
hypar["model"] = ISNetDIS() | |
"""# Build Model""" | |
net = build_model(hypar, device) | |
"""# Predict Mask""" | |
gsheetid = "1n9kk7IHyBzkw5e08wpjjt-Ry5aE_thqGrJ97rMeN-K4" | |
sheet_name = "sarvm" | |
gsheet_url = "https://docs.google.com/spreadsheets/d/{}/gviz/tq?tqx=out:csv&sheet={}".format(gsheetid, sheet_name) | |
gsheet_url | |
import pandas as pd | |
df = pd.read_csv(gsheet_url) | |
image_path = df.iloc[-1]['Image'] | |
drive_link = image_path | |
# Specify the local path and filename | |
local_path = "/content/DIS/IS-Net/saved_models/input2.jpg" | |
# Download the file | |
gdown.download(drive_link, local_path, quiet=False) | |
from google.colab.patches import cv2_imshow | |
from PIL import Image | |
image_path = "/content/DIS/IS-Net/saved_models/input2.jpg" | |
# image_bytes = BytesIO(requests.get(image_path).content) | |
# print(image_bytes) | |
image_tensor, orig_size = load_image(image_path, hypar) | |
mask = predict(net,image_tensor,orig_size, hypar, device) | |
image = Image.open(image_path) | |
f, ax = plt.subplots(1,2, figsize = (35,20)) | |
# ax[0].imshow(np.array(Image.open(image_bytes))) # Original image | |
# cv2_imshow(image_path) | |
ax[0].imshow(mask, cmap = 'gray') # retouched image | |
# ax[0].set_title("Original Image") | |
ax[0].set_title("Mask") | |
plt.show() | |
import cv2 | |
image = cv2.imread(image_path) | |
h, w , _ = image.shape | |
# print(h) | |
# print(w) | |
# print(_) | |
# print(image) | |
h, w , _ = image.shape | |
# print(h) | |
# print(w) | |
# print(_) | |
# new_image = np.zeros_like(image) | |
# new_image[mask] = image[mask] | |
new_image = cv2.bitwise_and(image, image, mask=mask) | |
transparent_bg = np.zeros((new_image.shape[0],new_image.shape[1], new_image.shape[2]+1) , dtype=np.uint8) | |
# Apply the mask to the transparent background | |
transparent_bg[:, :, :3] = new_image | |
# Set the alpha channel using the mask | |
transparent_bg[:, :, 3] = mask | |
# Save the new image with a transparent background | |
output_path = "/content/output.png" | |
cv2.imwrite(output_path, transparent_bg) | |
# Save the new image | |
# output_path = "/content/output.jpg" | |
# cv2.imwrite(output_path, new_image) | |