Hellisotherpeople commited on
Commit
53a8589
·
1 Parent(s): ffaaaf6

Update pages/Text-to-Text.py

Browse files
Files changed (1) hide show
  1. pages/Text-to-Text.py +3 -3
pages/Text-to-Text.py CHANGED
@@ -51,7 +51,7 @@ else:
51
 
52
 
53
  length = form.number_input("Select how long you want the generated text to be", value = 100)
54
- number_of_tokens_to_sample = form.number_input("Select how many tokens we want to search through when we do the filtering", value = int(25000))
55
  form.caption("Settings this to higher numbers will improve the experience but will cause generating to slow. Low numbers may cause lots of blank or failed generations")
56
  temperature = form.number_input("How spicy/interesting do we want our models output to be", value = 0.10, min_value = 0.0)
57
  form.caption("Setting this higher decreases the likelihood of high probability words and increases the likelihood of low probability (and presumably more interesting) words")
@@ -90,10 +90,10 @@ def get_next_word_without_e():
90
  if temperature != 1.0:
91
  next_token_candidates_logits = next_token_candidates_logits / temperature
92
  # filter
93
- filtered_next_token_candidates_logits = top_k_top_p_filtering(next_token_candidates_logits, top_k=number_of_tokens_to_sample, top_p=number_of_tokens_to_sample)
94
  # sample and get a probability distribution
95
  probs = F.softmax(filtered_next_token_candidates_logits, dim=-1)
96
- next_token_candidates = torch.multinomial(probs, num_samples=number_of_tokens_to_sample) ## 10000 random samples
97
  word_list = []
98
  for candidate_string in next_token_candidates:
99
  for candidate in candidate_string:
 
51
 
52
 
53
  length = form.number_input("Select how long you want the generated text to be", value = 100)
54
+ number_of_tokens_to_sample = form.number_input("Select how many tokens we want to search through when we do the filtering", value = 25000)
55
  form.caption("Settings this to higher numbers will improve the experience but will cause generating to slow. Low numbers may cause lots of blank or failed generations")
56
  temperature = form.number_input("How spicy/interesting do we want our models output to be", value = 0.10, min_value = 0.0)
57
  form.caption("Setting this higher decreases the likelihood of high probability words and increases the likelihood of low probability (and presumably more interesting) words")
 
90
  if temperature != 1.0:
91
  next_token_candidates_logits = next_token_candidates_logits / temperature
92
  # filter
93
+ filtered_next_token_candidates_logits = top_k_top_p_filtering(next_token_candidates_logits, top_k=int(number_of_tokens_to_sample), top_p=int(number_of_tokens_to_sample))
94
  # sample and get a probability distribution
95
  probs = F.softmax(filtered_next_token_candidates_logits, dim=-1)
96
+ next_token_candidates = torch.multinomial(probs, num_samples=int(number_of_tokens_to_sample)) ## 10000 random samples
97
  word_list = []
98
  for candidate_string in next_token_candidates:
99
  for candidate in candidate_string: