Spaces:
Sleeping
Sleeping
File size: 11,741 Bytes
cfb9037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import gradio as gr
import os
import json
import torch
import torch.nn as nn
import diffusers
from einops import rearrange
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
NUM_STEPS = 64
FRAMES = 192
FPS=32
mycss = """
.contain {
width: 1000px;
margin: 0 auto;
}
.svelte-1pijsyv {
width: 448px;
}
.arrow {
display: flex;
align-items: center;
margin: 7px 0;
}
.arrow-tail {
width: 270px;
height: 50px;
background-color: black;
transition: background-color 0.3s;
}
.arrow-head {
width: 0;
height: 0;
border-top: 70px solid transparent;
border-bottom: 70px solid transparent;
border-left: 120px solid black;
transition: border-left-color 0.3s;
}
@media (prefers-color-scheme: dark) {
.arrow-tail {
background-color: white;
}
.arrow-head {
border-left-color: white;
}
}
"""
myhtml = """
<div class="arrow">
<div class="arrow-tail"></div>
<div class="arrow-head"></div>
</div>
"""
myjs = """
function setLoopTrue() {
let videos = document.getElementsByTagName('video');
if (videos.length > 0) {
document.getElementsByTagName('video')[0].loop = true;
}
setTimeout(setLoopTrue, 3000);
}
"""
def load_model(path):
# find config.json
json_path = os.path.join(path, "config.json")
assert os.path.exists(json_path), f"Could not find config.json at {json_path}"
with open(json_path, "r") as f:
config = json.load(f)
# instantiate class
klass_name = config["_class_name"]
klass = getattr(diffusers, klass_name, None)
if klass is None:
klass = globals().get(klass_name, None)
assert klass is not None, f"Could not find class {klass_name} in diffusers or global scope."
assert getattr(klass, "from_pretrained", None) is not None, f"Class {klass_name} does not support 'from_pretrained'."
# load checkpoint
model = klass.from_pretrained(path)
return model, config
def load_scheduler(config):
scheduler_kwargs = OmegaConf.to_container(config.noise_scheduler)
scheduler_klass_name = scheduler_kwargs.pop("_class_name")
scheduler_klass = getattr(diffusers, scheduler_klass_name, None)
scheduler = scheduler_klass(**scheduler_kwargs)
return scheduler
def padf(tensor, mult=3):
pad = 2**mult - (tensor.shape[-1] % 2**mult)
pad = pad//2
tensor = nn.functional.pad(tensor, (pad, pad, pad, pad, 0, 0), mode='replicate')
return tensor, pad
def unpadf(tensor, pad=1):
return tensor[..., pad:-pad, pad:-pad]
def pad_reshape(tensor, mult=3):
tensor, pad = padf(tensor, mult=mult)
tensor = rearrange(tensor, "b c t h w -> b t c h w")
return tensor, pad
def unpad_reshape(tensor, pad=1):
tensor = rearrange(tensor, "b t c h w -> b c t h w")
tensor = unpadf(tensor, pad=pad)
return tensor
class Context:
def __init__(self, lidm_path, lvdm_path, vae_path, config_path):
self.lidm, self.lidm_config = load_model(lidm_path)
self.lvdm, self.lvdm_config = load_model(lvdm_path)
self.vae, self.vae_config = load_model(vae_path)
self.config = OmegaConf.load(config_path)
self.models = [self.lidm, self.lvdm, self.vae]
self.scheduler = load_scheduler(self.config)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dtype = torch.float32
for model in self.models:
model.to(self.device, dtype=self.dtype)
model.eval()
print("Models loaded")
def get_img(self, steps):
print("generating image")
self.scheduler.set_timesteps(steps)
with torch.no_grad():
B, C, H, W = 1, self.lidm_config["in_channels"], self.lidm_config["sample_size"], self.lidm_config["sample_size"]
timesteps = self.scheduler.timesteps
forward_kwargs = {}
latents = torch.randn((B, C, H, W), device=self.device, dtype=self.dtype)
with torch.autocast("cuda"):
for t in tqdm(timesteps):
forward_kwargs["timestep"] = t
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep=t)
latent_model_input, padding = padf(latent_model_input, mult=3)
noise_pred = self.lidm(latent_model_input, **forward_kwargs).sample
noise_pred = unpadf(noise_pred, pad=padding)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
# latent shape[B,C,H,W]
latents = latents / self.vae.config.scaling_factor
img = self.vae.decode(latents).sample
img = (img + 1) * 128 # [-1, 1] -> [0, 256]
img = img.mean(1).unsqueeze(1).repeat([1, 3, 1, 1])
img = img.clamp(0, 255).to(torch.uint8).cpu().numpy()
img = img[0].transpose(1, 2, 0)
img = Image.fromarray(img)
return img, latents
def get_vid(self, lvef: int, ref_latent: torch.Tensor, steps: int):
print("generating video")
self.scheduler.set_timesteps(steps)
with torch.no_grad():
B, C, T, H, W = 1, 4, self.lvdm_config["num_frames"], self.lvdm_config["sample_size"], self.lvdm_config["sample_size"]
if FRAMES > T:
OT = T//2 # overlap 64//2
TR = (FRAMES - T) / 32 # total frames (192 - 64) / 32 = 4
TR = int(TR + 1) # total repetitions
NT = (T-OT) * TR + OT
else:
OT = 0
TR = 1
NT = T
timesteps = self.scheduler.timesteps
lvef = lvef / 100
lvef = torch.tensor([lvef]*TR, device=self.device, dtype=self.dtype)
lvef = lvef[:, None, None]
print(lvef.shape)
forward_kwargs = {}
forward_kwargs["added_time_ids"] = torch.zeros((B*TR, self.config.unet.addition_time_embed_dim), device=self.device, dtype=self.dtype)
forward_kwargs["encoder_hidden_states"] = lvef
print(forward_kwargs["added_time_ids"].shape)
latent_cond_images = ref_latent * self.vae.config.scaling_factor
latent_cond_images = latent_cond_images[:,:,None,:,:].repeat([1, 1, NT, 1, 1]).to(self.device, dtype=self.dtype)
print(latent_cond_images.shape)
latents = torch.randn((B, C, NT, H, W), device=self.device, dtype=self.dtype)
print(latents.shape)
with torch.autocast("cuda"):
for t in tqdm(timesteps):
forward_kwargs["timestep"] = t
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep=t)
latent_model_input = torch.cat((latent_model_input, latent_cond_images), dim=1) # B x 2C x T x H x W
latent_model_input, padding = pad_reshape(latent_model_input, mult=3) # B x T x 2C x H+P x W+P
inputs = torch.cat([latent_model_input[:,r*(T-OT):r*(T-OT)+T] for r in range(TR)], dim=0) # B*TR x T x 2C x H+P x W+P
noise_pred = self.lvdm(inputs, **forward_kwargs).sample
outputs = torch.chunk(noise_pred, TR, dim=0) # TR x B x T x C x H x W
noise_predictions = []
for r in range(TR):
noise_predictions.append(outputs[r] if r == 0 else outputs[r][:,OT:])
noise_pred = torch.cat(noise_predictions, dim=1) # B x NT x C x H x W
noise_pred = unpad_reshape(noise_pred, pad=padding)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
print("done generating noise")
# latent shape[B,C,T,H,W]
latents = latents / self.vae.config.scaling_factor
latents = rearrange(latents, "b c t h w -> (b t) c h w")
chunk_size = 16
chunked_latents = torch.split(latents, chunk_size, dim=0)
decoded_chunks = []
for chunk in chunked_latents:
decoded_chunks.append(self.vae.decode(chunk.float().cuda()).sample.cpu())
video = torch.cat(decoded_chunks, dim=0) # (B*T) x H x W x C
video = rearrange(video, "(b t) c h w -> b t h w c", b=B)[0] # T H W C
video = (video + 1) * 128 # [-1, 1] -> [0, 256]
video = video.mean(-1).unsqueeze(-1).repeat([1, 1, 1, 3]) # T H W 3
video = video.clamp(0, 255).to(torch.uint8).cpu().numpy()
out = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), FPS, (112, 112))
for img in video:
out.write(img)
out.release()
return "output.mp4"
ctx = Context(
lidm_path="resources/lidm",
lvdm_path="resources/lvdm",
vae_path="resources/ivae",
config_path="resources/config.yaml"
)
with gr.Blocks(css=mycss, js=myjs) as demo:
with gr.Row():
# Greet user with an explanation of the demo
gr.Markdown("""
# EchoNet-Synthetic: Privacy-preserving Video Generation for Safe Medical Data Sharing
This demo is attached to a paper under review at MICCAI 2024, and is targeted at the reviewers of that paper.
1. Start by generating an image using the "Generate Image" button. This will generate a random image, similar to the EchoNet-Dynamic dataset.
2. Adjust the "Ejection Fraction Score" slider to change the ejection fraction of the generated image.
3. Generate a video using the "Generate Video" button. This will generate a video from the generated image, with the ejection fraction score you chose.
We leave the ejection fraction input completely open, so you can see how the video generation changes with different ejection fraction scores, even unrealistic ones. The normal ejection fraction range is 50-75.<br>
We recommend 64 steps for ideal image quality, but you can adjust this to see how it affects the video generation.
""")
with gr.Row():
# core activity
# 3 columns
with gr.Column():
# Image generation goes here
img = gr.Image(interactive=False, label="Generated Image") # allow user upload
img_btn = gr.Button("Generate Image")
with gr.Column():
# LVEF slider goes here
# Add an big arrow image for show
gr.HTML(myhtml)
efslider = gr.Slider(minimum=0, maximum=100, value=65, step=1, label="Ejection Fraction Score (%)") #
dsslider = gr.Slider(minimum=1, maximum=999, value=64, step=1, label="Sampling Steps") #
pass
with gr.Column():
# Video generation goes here
vid = gr.Video(interactive=False, autoplay=True, label="Generated Video")
vid_btn = gr.Button("Generate Video")
with gr.Row():
# Additional informations
gr.Examples(
examples=[[f"resources/examples/ef{i}.png", f"resources/examples/ef{i}.mp4", i, 64] for i in [20, 30, 40, 50, 60, 70, 80, 90]],
inputs=[img, vid, efslider, dsslider],
outputs=None,
fn=None,
cache_examples=False,
)
ltt_img = gr.State() # latent image state
img.change() # apply center-cropping
img_btn.click(fn=ctx.get_img, inputs=[dsslider], outputs=[img, ltt_img]) # generate image with lidm
vid_btn.click(fn=ctx.get_vid, inputs=[efslider, ltt_img, dsslider], outputs=[vid]) # generate video with lvdm
demo.launch(share=False) |