File size: 11,741 Bytes
cfb9037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gradio as gr
import os
import json
import torch
import torch.nn as nn
import diffusers
from einops import rearrange
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2

NUM_STEPS = 64
FRAMES = 192
FPS=32

mycss = """
.contain {
    width: 1000px;
    margin: 0 auto;
}

.svelte-1pijsyv {
    width: 448px;
}

.arrow {
  display: flex;
  align-items: center;
  margin: 7px 0;
}

.arrow-tail {
  width: 270px;
  height: 50px;
  background-color: black;
  transition: background-color 0.3s;
}

.arrow-head {
  width: 0; 
  height: 0; 
  border-top: 70px solid transparent;
  border-bottom: 70px solid transparent;
  border-left: 120px solid black;
  transition: border-left-color 0.3s;
}

@media (prefers-color-scheme: dark) {
  .arrow-tail {
    background-color: white;
  }
  .arrow-head {
    border-left-color: white;
  }
}

"""

myhtml = """
<div class="arrow">
  <div class="arrow-tail"></div>
  <div class="arrow-head"></div>
</div>
"""

myjs = """
function setLoopTrue() {
    let videos = document.getElementsByTagName('video');
    if (videos.length > 0) {
        document.getElementsByTagName('video')[0].loop = true;
    }
    setTimeout(setLoopTrue, 3000);
}
"""

def load_model(path):

    # find config.json
    json_path = os.path.join(path, "config.json")
    assert os.path.exists(json_path), f"Could not find config.json at {json_path}"
    with open(json_path, "r") as f:
        config = json.load(f)

    # instantiate class
    klass_name = config["_class_name"]
    klass = getattr(diffusers, klass_name, None)
    if klass is None:
        klass = globals().get(klass_name, None)
    assert klass is not None, f"Could not find class {klass_name} in diffusers or global scope."
    assert getattr(klass, "from_pretrained", None) is not None, f"Class {klass_name} does not support 'from_pretrained'."

    # load checkpoint
    model = klass.from_pretrained(path)

    return model, config

def load_scheduler(config):
    scheduler_kwargs = OmegaConf.to_container(config.noise_scheduler)
    scheduler_klass_name = scheduler_kwargs.pop("_class_name")
    scheduler_klass = getattr(diffusers, scheduler_klass_name, None)
    scheduler = scheduler_klass(**scheduler_kwargs)
    return scheduler

def padf(tensor, mult=3):
    pad = 2**mult - (tensor.shape[-1] % 2**mult)
    pad = pad//2
    tensor = nn.functional.pad(tensor, (pad, pad, pad, pad, 0, 0), mode='replicate')
    return tensor, pad

def unpadf(tensor, pad=1):
    return tensor[..., pad:-pad, pad:-pad]

def pad_reshape(tensor, mult=3):
    tensor, pad = padf(tensor, mult=mult)
    tensor = rearrange(tensor, "b c t h w -> b t c h w")
    return tensor, pad

def unpad_reshape(tensor, pad=1):
    tensor = rearrange(tensor, "b t c h w -> b c t h w")
    tensor = unpadf(tensor, pad=pad)
    return tensor

class Context:
    def __init__(self, lidm_path, lvdm_path, vae_path, config_path):
        self.lidm, self.lidm_config = load_model(lidm_path)
        self.lvdm, self.lvdm_config = load_model(lvdm_path)
        self.vae, self.vae_config = load_model(vae_path)
        self.config = OmegaConf.load(config_path)
        self.models = [self.lidm, self.lvdm, self.vae]
        self.scheduler = load_scheduler(self.config)

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.dtype = torch.float32

        for model in self.models:
            model.to(self.device, dtype=self.dtype)
            model.eval()
        
        print("Models loaded")

    def get_img(self, steps):
        print("generating image")
        self.scheduler.set_timesteps(steps)
        with torch.no_grad():
            B, C, H, W = 1, self.lidm_config["in_channels"], self.lidm_config["sample_size"], self.lidm_config["sample_size"]

            timesteps = self.scheduler.timesteps
            forward_kwargs = {}

            latents = torch.randn((B, C, H, W), device=self.device, dtype=self.dtype)
            with torch.autocast("cuda"):
                for t in tqdm(timesteps):
                    forward_kwargs["timestep"] =  t
                    latent_model_input = latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep=t)
                    latent_model_input, padding = padf(latent_model_input, mult=3)
                    noise_pred = self.lidm(latent_model_input, **forward_kwargs).sample
                    noise_pred = unpadf(noise_pred, pad=padding)
                    latents = self.scheduler.step(noise_pred, t, latents).prev_sample
            # latent shape[B,C,H,W]
            latents = latents / self.vae.config.scaling_factor
            img = self.vae.decode(latents).sample
            img = (img + 1) * 128 # [-1, 1] -> [0, 256]
            img = img.mean(1).unsqueeze(1).repeat([1, 3, 1, 1])
            img = img.clamp(0, 255).to(torch.uint8).cpu().numpy()
            img = img[0].transpose(1, 2, 0)
            img = Image.fromarray(img)

        return img, latents

    def get_vid(self, lvef: int, ref_latent: torch.Tensor, steps: int):
        print("generating video")
        self.scheduler.set_timesteps(steps)

        with torch.no_grad():
            B, C, T, H, W = 1, 4, self.lvdm_config["num_frames"], self.lvdm_config["sample_size"], self.lvdm_config["sample_size"]

            if FRAMES > T:
                OT = T//2 # overlap 64//2
                TR = (FRAMES - T) / 32 # total frames (192 - 64) / 32 = 4
                TR = int(TR + 1) # total repetitions
                NT = (T-OT) * TR + OT
            else:
                OT = 0
                TR = 1
                NT = T
            
            timesteps = self.scheduler.timesteps

            lvef = lvef / 100
            lvef = torch.tensor([lvef]*TR, device=self.device, dtype=self.dtype)
            lvef = lvef[:, None, None]
            print(lvef.shape)

            forward_kwargs = {}
            forward_kwargs["added_time_ids"] = torch.zeros((B*TR, self.config.unet.addition_time_embed_dim), device=self.device, dtype=self.dtype)
            forward_kwargs["encoder_hidden_states"] = lvef
            print(forward_kwargs["added_time_ids"].shape)

            latent_cond_images = ref_latent * self.vae.config.scaling_factor
            latent_cond_images = latent_cond_images[:,:,None,:,:].repeat([1, 1, NT, 1, 1]).to(self.device, dtype=self.dtype)
            print(latent_cond_images.shape)

            latents = torch.randn((B, C, NT, H, W), device=self.device, dtype=self.dtype)
            print(latents.shape)

            with torch.autocast("cuda"):
                for t in tqdm(timesteps):
                    forward_kwargs["timestep"] = t
                    latent_model_input = latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep=t)
                    latent_model_input = torch.cat((latent_model_input, latent_cond_images), dim=1) # B x 2C x T x H x W
                    latent_model_input, padding = pad_reshape(latent_model_input, mult=3) # B x T x 2C x H+P x W+P

                    inputs = torch.cat([latent_model_input[:,r*(T-OT):r*(T-OT)+T] for r in range(TR)], dim=0) # B*TR x T x 2C x H+P x W+P
                    noise_pred = self.lvdm(inputs, **forward_kwargs).sample
                    outputs = torch.chunk(noise_pred, TR, dim=0) # TR x B x T x C x H x W
                    noise_predictions = []
                    for r in range(TR):
                        noise_predictions.append(outputs[r] if r == 0 else outputs[r][:,OT:])
                    noise_pred = torch.cat(noise_predictions, dim=1) # B x NT x C x H x W
                    noise_pred = unpad_reshape(noise_pred, pad=padding)
                    latents = self.scheduler.step(noise_pred, t, latents).prev_sample
            
            print("done generating noise")
            # latent shape[B,C,T,H,W]
            latents = latents / self.vae.config.scaling_factor
            latents = rearrange(latents, "b c t h w -> (b t) c h w")

            chunk_size = 16
            chunked_latents = torch.split(latents, chunk_size, dim=0)
            decoded_chunks = []
            for chunk in chunked_latents:
                decoded_chunks.append(self.vae.decode(chunk.float().cuda()).sample.cpu())
            video = torch.cat(decoded_chunks, dim=0) # (B*T) x H x W x C
            video = rearrange(video, "(b t) c h w -> b t h w c", b=B)[0] # T H W C
            video = (video + 1) * 128 # [-1, 1] -> [0, 256]
            video = video.mean(-1).unsqueeze(-1).repeat([1, 1, 1, 3]) # T H W 3
            video = video.clamp(0, 255).to(torch.uint8).cpu().numpy()
            out = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), FPS, (112, 112))
            for img in video:
                out.write(img)
            out.release()

        return "output.mp4"


ctx = Context(
    lidm_path="resources/lidm",
    lvdm_path="resources/lvdm",
    vae_path="resources/ivae",
    config_path="resources/config.yaml"
)

with gr.Blocks(css=mycss, js=myjs) as demo:
    with gr.Row():
        # Greet user with an explanation of the demo
        gr.Markdown("""
        # EchoNet-Synthetic: Privacy-preserving Video Generation for Safe Medical Data Sharing
        This demo is attached to a paper under review at MICCAI 2024, and is targeted at the reviewers of that paper.

        1. Start by generating an image using the "Generate Image" button. This will generate a random image, similar to the EchoNet-Dynamic dataset.
        2. Adjust the "Ejection Fraction Score" slider to change the ejection fraction of the generated image.
        3. Generate a video using the "Generate Video" button. This will generate a video from the generated image, with the ejection fraction score you chose.

        We leave the ejection fraction input completely open, so you can see how the video generation changes with different ejection fraction scores, even unrealistic ones. The normal ejection fraction range is 50-75.<br>
        We recommend 64 steps for ideal image quality, but you can adjust this to see how it affects the video generation. 
        
        """)
    
    with gr.Row():
        # core activity
        # 3 columns
        with gr.Column():
            # Image generation goes here
            img = gr.Image(interactive=False, label="Generated Image") # allow user upload
            img_btn = gr.Button("Generate Image")

        with gr.Column():
            # LVEF slider goes here
            # Add an big arrow image for show
            gr.HTML(myhtml) 
            efslider = gr.Slider(minimum=0, maximum=100, value=65, step=1, label="Ejection Fraction Score (%)") #
            dsslider = gr.Slider(minimum=1, maximum=999, value=64, step=1, label="Sampling Steps") #
            pass

        with gr.Column():
            # Video generation goes here
            vid = gr.Video(interactive=False, autoplay=True, label="Generated Video")
            vid_btn = gr.Button("Generate Video")
    
    with gr.Row():
        # Additional informations
        gr.Examples(
            examples=[[f"resources/examples/ef{i}.png", f"resources/examples/ef{i}.mp4", i, 64] for i in [20, 30, 40, 50, 60, 70, 80, 90]],
            inputs=[img, vid, efslider, dsslider],
            outputs=None,
            fn=None,
            cache_examples=False,
        )


    ltt_img = gr.State() # latent image state

    img.change() # apply center-cropping
    img_btn.click(fn=ctx.get_img, inputs=[dsslider], outputs=[img, ltt_img]) # generate image with lidm

    vid_btn.click(fn=ctx.get_vid, inputs=[efslider, ltt_img, dsslider], outputs=[vid]) # generate video with lvdm

demo.launch(share=False)