from enum import IntEnum, Enum disabled = 'Disabled' enabled = 'Enabled' subtle_variation = 'Vary (Subtle)' strong_variation = 'Vary (Strong)' upscale_15 = 'Upscale (1.5x)' upscale_2 = 'Upscale (2x)' upscale_fast = 'Upscale (Fast 2x)' uov_list = [disabled, subtle_variation, strong_variation, upscale_15, upscale_2, upscale_fast] enhancement_uov_before = "Before First Enhancement" enhancement_uov_after = "After Last Enhancement" enhancement_uov_processing_order = [enhancement_uov_before, enhancement_uov_after] enhancement_uov_prompt_type_original = 'Original Prompts' enhancement_uov_prompt_type_last_filled = 'Last Filled Enhancement Prompts' enhancement_uov_prompt_types = [enhancement_uov_prompt_type_original, enhancement_uov_prompt_type_last_filled] CIVITAI_NO_KARRAS = ["euler", "euler_ancestral", "heun", "dpm_fast", "dpm_adaptive", "ddim", "uni_pc"] # fooocus: a1111 (Civitai) KSAMPLER = { "euler": "Euler", "euler_ancestral": "Euler a", "heun": "Heun", "heunpp2": "", "dpm_2": "DPM2", "dpm_2_ancestral": "DPM2 a", "lms": "LMS", "dpm_fast": "DPM fast", "dpm_adaptive": "DPM adaptive", "dpmpp_2s_ancestral": "DPM++ 2S a", "dpmpp_sde": "DPM++ SDE", "dpmpp_sde_gpu": "DPM++ SDE", "dpmpp_2m": "DPM++ 2M", "dpmpp_2m_sde": "DPM++ 2M SDE", "dpmpp_2m_sde_gpu": "DPM++ 2M SDE", "dpmpp_3m_sde": "", "dpmpp_3m_sde_gpu": "", "ddpm": "", "lcm": "LCM", "tcd": "TCD", "restart": "Restart" } SAMPLER_EXTRA = { "ddim": "DDIM", "uni_pc": "UniPC", "uni_pc_bh2": "" } SAMPLERS = KSAMPLER | SAMPLER_EXTRA KSAMPLER_NAMES = list(KSAMPLER.keys()) SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo", "align_your_steps", "tcd", "edm_playground_v2.5"] SAMPLER_NAMES = KSAMPLER_NAMES + list(SAMPLER_EXTRA.keys()) sampler_list = SAMPLER_NAMES scheduler_list = SCHEDULER_NAMES clip_skip_max = 12 default_vae = 'Default (model)' refiner_swap_method = 'joint' default_input_image_tab = 'uov_tab' input_image_tab_ids = ['uov_tab', 'ip_tab', 'inpaint_tab', 'describe_tab', 'enhance_tab', 'metadata_tab'] cn_ip = "ImagePrompt" cn_ip_face = "FaceSwap" cn_canny = "PyraCanny" cn_cpds = "CPDS" ip_list = [cn_ip, cn_canny, cn_cpds, cn_ip_face] default_ip = cn_ip default_parameters = { cn_ip: (0.5, 0.6), cn_ip_face: (0.9, 0.75), cn_canny: (0.5, 1.0), cn_cpds: (0.5, 1.0) } # stop, weight output_formats = ['png', 'jpeg', 'webp'] inpaint_mask_models = ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam'] inpaint_mask_cloth_category = ['full', 'upper', 'lower'] inpaint_mask_sam_model = ['vit_b', 'vit_l', 'vit_h'] inpaint_engine_versions = ['None', 'v1', 'v2.5', 'v2.6'] inpaint_option_default = 'Inpaint or Outpaint (default)' inpaint_option_detail = 'Improve Detail (face, hand, eyes, etc.)' inpaint_option_modify = 'Modify Content (add objects, change background, etc.)' inpaint_options = [inpaint_option_default, inpaint_option_detail, inpaint_option_modify] describe_type_photo = 'Photograph' describe_type_anime = 'Art/Anime' describe_types = [describe_type_photo, describe_type_anime] sdxl_aspect_ratios = [ '704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152', '896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960', '1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768', '1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640', '1664*576', '1728*576' ] class MetadataScheme(Enum): FOOOCUS = 'fooocus' A1111 = 'a1111' metadata_scheme = [ (f'{MetadataScheme.FOOOCUS.value} (json)', MetadataScheme.FOOOCUS.value), (f'{MetadataScheme.A1111.value} (plain text)', MetadataScheme.A1111.value), ] class OutputFormat(Enum): PNG = 'png' JPEG = 'jpeg' WEBP = 'webp' @classmethod def list(cls) -> list: return list(map(lambda c: c.value, cls)) class PerformanceLoRA(Enum): QUALITY = None SPEED = None EXTREME_SPEED = 'sdxl_lcm_lora.safetensors' LIGHTNING = 'sdxl_lightning_4step_lora.safetensors' HYPER_SD = 'sdxl_hyper_sd_4step_lora.safetensors' class Steps(IntEnum): QUALITY = 60 SPEED = 30 EXTREME_SPEED = 8 LIGHTNING = 4 HYPER_SD = 4 @classmethod def keys(cls) -> list: return list(map(lambda c: c, Steps.__members__)) class StepsUOV(IntEnum): QUALITY = 36 SPEED = 18 EXTREME_SPEED = 8 LIGHTNING = 4 HYPER_SD = 4 class Performance(Enum): QUALITY = 'Quality' SPEED = 'Speed' EXTREME_SPEED = 'Extreme Speed' LIGHTNING = 'Lightning' HYPER_SD = 'Hyper-SD' @classmethod def list(cls) -> list: return list(map(lambda c: (c.name, c.value), cls)) @classmethod def values(cls) -> list: return list(map(lambda c: c.value, cls)) @classmethod def by_steps(cls, steps: int | str): return cls[Steps(int(steps)).name] @classmethod def has_restricted_features(cls, x) -> bool: if isinstance(x, Performance): x = x.value return x in [cls.EXTREME_SPEED.value, cls.LIGHTNING.value, cls.HYPER_SD.value] def steps(self) -> int | None: return Steps[self.name].value if self.name in Steps.__members__ else None def steps_uov(self) -> int | None: return StepsUOV[self.name].value if self.name in StepsUOV.__members__ else None def lora_filename(self) -> str | None: return PerformanceLoRA[self.name].value if self.name in PerformanceLoRA.__members__ else None