Spaces:
Runtime error
Runtime error
import threading | |
from extras.inpaint_mask import generate_mask_from_image, SAMOptions | |
from modules.patch import PatchSettings, patch_settings, patch_all | |
import modules.config | |
patch_all() | |
class AsyncTask: | |
def __init__(self, args): | |
from modules.flags import Performance, MetadataScheme, ip_list, disabled | |
from modules.util import get_enabled_loras | |
from modules.config import default_max_lora_number | |
import args_manager | |
self.args = args.copy() | |
self.yields = [] | |
self.results = [] | |
self.last_stop = False | |
self.processing = False | |
self.performance_loras = [] | |
if len(args) == 0: | |
return | |
args.reverse() | |
self.generate_image_grid = args.pop() | |
self.prompt = args.pop() | |
self.negative_prompt = args.pop() | |
self.style_selections = args.pop() | |
self.performance_selection = Performance(args.pop()) | |
self.steps = self.performance_selection.steps() | |
self.original_steps = self.steps | |
self.aspect_ratios_selection = args.pop() | |
self.image_number = args.pop() | |
self.output_format = args.pop() | |
self.seed = int(args.pop()) | |
self.read_wildcards_in_order = args.pop() | |
self.sharpness = args.pop() | |
self.cfg_scale = args.pop() | |
self.base_model_name = args.pop() | |
self.refiner_model_name = args.pop() | |
self.refiner_switch = args.pop() | |
self.loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in | |
range(default_max_lora_number)]) | |
self.input_image_checkbox = args.pop() | |
self.current_tab = args.pop() | |
self.uov_method = args.pop() | |
self.uov_input_image = args.pop() | |
self.outpaint_selections = args.pop() | |
self.inpaint_input_image = args.pop() | |
self.inpaint_additional_prompt = args.pop() | |
self.inpaint_mask_image_upload = args.pop() | |
self.disable_preview = args.pop() | |
self.disable_intermediate_results = args.pop() | |
self.disable_seed_increment = args.pop() | |
self.black_out_nsfw = args.pop() | |
self.adm_scaler_positive = args.pop() | |
self.adm_scaler_negative = args.pop() | |
self.adm_scaler_end = args.pop() | |
self.adaptive_cfg = args.pop() | |
self.clip_skip = args.pop() | |
self.sampler_name = args.pop() | |
self.scheduler_name = args.pop() | |
self.vae_name = args.pop() | |
self.overwrite_step = args.pop() | |
self.overwrite_switch = args.pop() | |
self.overwrite_width = args.pop() | |
self.overwrite_height = args.pop() | |
self.overwrite_vary_strength = args.pop() | |
self.overwrite_upscale_strength = args.pop() | |
self.mixing_image_prompt_and_vary_upscale = args.pop() | |
self.mixing_image_prompt_and_inpaint = args.pop() | |
self.debugging_cn_preprocessor = args.pop() | |
self.skipping_cn_preprocessor = args.pop() | |
self.canny_low_threshold = args.pop() | |
self.canny_high_threshold = args.pop() | |
self.refiner_swap_method = args.pop() | |
self.controlnet_softness = args.pop() | |
self.freeu_enabled = args.pop() | |
self.freeu_b1 = args.pop() | |
self.freeu_b2 = args.pop() | |
self.freeu_s1 = args.pop() | |
self.freeu_s2 = args.pop() | |
self.debugging_inpaint_preprocessor = args.pop() | |
self.inpaint_disable_initial_latent = args.pop() | |
self.inpaint_engine = args.pop() | |
self.inpaint_strength = args.pop() | |
self.inpaint_respective_field = args.pop() | |
self.inpaint_advanced_masking_checkbox = args.pop() | |
self.invert_mask_checkbox = args.pop() | |
self.inpaint_erode_or_dilate = args.pop() | |
self.save_final_enhanced_image_only = args.pop() if not args_manager.args.disable_image_log else False | |
self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False | |
self.metadata_scheme = MetadataScheme( | |
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS | |
self.cn_tasks = {x: [] for x in ip_list} | |
for _ in range(modules.config.default_controlnet_image_count): | |
cn_img = args.pop() | |
cn_stop = args.pop() | |
cn_weight = args.pop() | |
cn_type = args.pop() | |
if cn_img is not None: | |
self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) | |
self.debugging_dino = args.pop() | |
self.dino_erode_or_dilate = args.pop() | |
self.debugging_enhance_masks_checkbox = args.pop() | |
self.enhance_input_image = args.pop() | |
self.enhance_checkbox = args.pop() | |
self.enhance_uov_method = args.pop() | |
self.enhance_uov_processing_order = args.pop() | |
self.enhance_uov_prompt_type = args.pop() | |
self.enhance_ctrls = [] | |
for _ in range(modules.config.default_enhance_tabs): | |
enhance_enabled = args.pop() | |
enhance_mask_dino_prompt_text = args.pop() | |
enhance_prompt = args.pop() | |
enhance_negative_prompt = args.pop() | |
enhance_mask_model = args.pop() | |
enhance_mask_cloth_category = args.pop() | |
enhance_mask_sam_model = args.pop() | |
enhance_mask_text_threshold = args.pop() | |
enhance_mask_box_threshold = args.pop() | |
enhance_mask_sam_max_detections = args.pop() | |
enhance_inpaint_disable_initial_latent = args.pop() | |
enhance_inpaint_engine = args.pop() | |
enhance_inpaint_strength = args.pop() | |
enhance_inpaint_respective_field = args.pop() | |
enhance_inpaint_erode_or_dilate = args.pop() | |
enhance_mask_invert = args.pop() | |
if enhance_enabled: | |
self.enhance_ctrls.append([ | |
enhance_mask_dino_prompt_text, | |
enhance_prompt, | |
enhance_negative_prompt, | |
enhance_mask_model, | |
enhance_mask_cloth_category, | |
enhance_mask_sam_model, | |
enhance_mask_text_threshold, | |
enhance_mask_box_threshold, | |
enhance_mask_sam_max_detections, | |
enhance_inpaint_disable_initial_latent, | |
enhance_inpaint_engine, | |
enhance_inpaint_strength, | |
enhance_inpaint_respective_field, | |
enhance_inpaint_erode_or_dilate, | |
enhance_mask_invert | |
]) | |
self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) | |
self.images_to_enhance_count = 0 | |
self.enhance_stats = {} | |
async_tasks = [] | |
class EarlyReturnException(BaseException): | |
pass | |
def worker(): | |
global async_tasks | |
import os | |
import traceback | |
import math | |
import numpy as np | |
import torch | |
import time | |
import shared | |
import random | |
import copy | |
import cv2 | |
import modules.default_pipeline as pipeline | |
import modules.core as core | |
import modules.flags as flags | |
import modules.patch | |
import ldm_patched.modules.model_management | |
import extras.preprocessors as preprocessors | |
import modules.inpaint_worker as inpaint_worker | |
import modules.constants as constants | |
import extras.ip_adapter as ip_adapter | |
import extras.face_crop | |
import fooocus_version | |
from extras.censor import default_censor | |
from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name | |
from modules.private_logger import log | |
from extras.expansion import safe_str | |
from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, | |
get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt, | |
apply_wildcards) | |
from modules.upscaler import perform_upscale | |
from modules.flags import Performance | |
from modules.meta_parser import get_metadata_parser | |
pid = os.getpid() | |
print(f'Started worker with PID {pid}') | |
try: | |
async_gradio_app = shared.gradio_root | |
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' | |
if async_gradio_app.share: | |
flag += f''' or {async_gradio_app.share_url}''' | |
print(flag) | |
except Exception as e: | |
print(e) | |
def progressbar(async_task, number, text): | |
print(f'[Fooocus] {text}') | |
async_task.yields.append(['preview', (number, text, None)]) | |
def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False): | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
if censor and (modules.config.default_black_out_nsfw or black_out_nsfw): | |
progressbar(async_task, progressbar_index, 'Checking for NSFW content ...') | |
imgs = default_censor(imgs) | |
async_task.results = async_task.results + imgs | |
if do_not_show_finished_images: | |
return | |
async_task.yields.append(['results', async_task.results]) | |
return | |
def build_image_wall(async_task): | |
results = [] | |
if len(async_task.results) < 2: | |
return | |
for img in async_task.results: | |
if isinstance(img, str) and os.path.exists(img): | |
img = cv2.imread(img) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
if not isinstance(img, np.ndarray): | |
return | |
if img.ndim != 3: | |
return | |
results.append(img) | |
H, W, C = results[0].shape | |
for img in results: | |
Hn, Wn, Cn = img.shape | |
if H != Hn: | |
return | |
if W != Wn: | |
return | |
if C != Cn: | |
return | |
cols = float(len(results)) ** 0.5 | |
cols = int(math.ceil(cols)) | |
rows = float(len(results)) / float(cols) | |
rows = int(math.ceil(rows)) | |
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8) | |
for y in range(rows): | |
for x in range(cols): | |
if y * cols + x < len(results): | |
img = results[y * cols + x] | |
wall[y * H:y * H + H, x * W:x * W + W, :] = img | |
# must use deep copy otherwise gradio is super laggy. Do not use list.append() . | |
async_task.results = async_task.results + [wall] | |
return | |
def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, | |
denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond, | |
negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps, | |
total_count, show_intermediate_results, persist_image=True): | |
if async_task.last_stop is not False: | |
ldm_patched.modules.model_management.interrupt_current_processing() | |
if 'cn' in goals: | |
for cn_flag, cn_path in [ | |
(flags.cn_canny, controlnet_canny_path), | |
(flags.cn_cpds, controlnet_cpds_path) | |
]: | |
for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]: | |
positive_cond, negative_cond = core.apply_controlnet( | |
positive_cond, negative_cond, | |
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) | |
imgs = pipeline.process_diffusion( | |
positive_cond=positive_cond, | |
negative_cond=negative_cond, | |
steps=steps, | |
switch=switch, | |
width=width, | |
height=height, | |
image_seed=task['task_seed'], | |
callback=callback, | |
sampler_name=async_task.sampler_name, | |
scheduler_name=final_scheduler_name, | |
latent=initial_latent, | |
denoise=denoising_strength, | |
tiled=tiled, | |
cfg_scale=async_task.cfg_scale, | |
refiner_swap_method=async_task.refiner_swap_method, | |
disable_preview=async_task.disable_preview | |
) | |
del positive_cond, negative_cond # Save memory | |
if inpaint_worker.current_task is not None: | |
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] | |
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps) | |
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: | |
progressbar(async_task, current_progress, 'Checking for NSFW content ...') | |
imgs = default_censor(imgs) | |
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') | |
img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) | |
yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, | |
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) | |
return imgs, img_paths, current_progress | |
def apply_patch_settings(async_task): | |
patch_settings[pid] = PatchSettings( | |
async_task.sharpness, | |
async_task.adm_scaler_end, | |
async_task.adm_scaler_positive, | |
async_task.adm_scaler_negative, | |
async_task.controlnet_softness, | |
async_task.adaptive_cfg | |
) | |
def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list: | |
img_paths = [] | |
for x in imgs: | |
d = [('Prompt', 'prompt', task['log_positive_prompt']), | |
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), | |
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), | |
('Styles', 'styles', | |
str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), | |
('Performance', 'performance', async_task.performance_selection.value), | |
('Steps', 'steps', async_task.steps), | |
('Resolution', 'resolution', str((width, height))), | |
('Guidance Scale', 'guidance_scale', async_task.cfg_scale), | |
('Sharpness', 'sharpness', async_task.sharpness), | |
('ADM Guidance', 'adm_guidance', str(( | |
modules.patch.patch_settings[pid].positive_adm_scale, | |
modules.patch.patch_settings[pid].negative_adm_scale, | |
modules.patch.patch_settings[pid].adm_scaler_end))), | |
('Base Model', 'base_model', async_task.base_model_name), | |
('Refiner Model', 'refiner_model', async_task.refiner_model_name), | |
('Refiner Switch', 'refiner_switch', async_task.refiner_switch)] | |
if async_task.refiner_model_name != 'None': | |
if async_task.overwrite_switch > 0: | |
d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch)) | |
if async_task.refiner_swap_method != flags.refiner_swap_method: | |
d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method)) | |
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: | |
d.append( | |
('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) | |
if async_task.clip_skip > 1: | |
d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip)) | |
d.append(('Sampler', 'sampler', async_task.sampler_name)) | |
d.append(('Scheduler', 'scheduler', async_task.scheduler_name)) | |
d.append(('VAE', 'vae', async_task.vae_name)) | |
d.append(('Seed', 'seed', str(task['task_seed']))) | |
if async_task.freeu_enabled: | |
d.append(('FreeU', 'freeu', | |
str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2)))) | |
for li, (n, w) in enumerate(loras): | |
if n != 'None': | |
d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) | |
metadata_parser = None | |
if async_task.save_metadata_to_images: | |
metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme) | |
metadata_parser.set_data(task['log_positive_prompt'], task['positive'], | |
task['log_negative_prompt'], task['negative'], | |
async_task.steps, async_task.base_model_name, async_task.refiner_model_name, | |
loras, async_task.vae_name) | |
d.append(('Metadata Scheme', 'metadata_scheme', | |
async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images)) | |
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) | |
img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image)) | |
return img_paths | |
def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress): | |
for task in async_task.cn_tasks[flags.cn_canny]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = resize_image(HWC3(cn_img), width=width, height=height) | |
if not async_task.skipping_cn_preprocessor: | |
cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold, | |
async_task.canny_high_threshold) | |
cn_img = HWC3(cn_img) | |
task[0] = core.numpy_to_pytorch(cn_img) | |
if async_task.debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) | |
for task in async_task.cn_tasks[flags.cn_cpds]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = resize_image(HWC3(cn_img), width=width, height=height) | |
if not async_task.skipping_cn_preprocessor: | |
cn_img = preprocessors.cpds(cn_img) | |
cn_img = HWC3(cn_img) | |
task[0] = core.numpy_to_pytorch(cn_img) | |
if async_task.debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) | |
for task in async_task.cn_tasks[flags.cn_ip]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = HWC3(cn_img) | |
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 | |
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) | |
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) | |
if async_task.debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) | |
for task in async_task.cn_tasks[flags.cn_ip_face]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = HWC3(cn_img) | |
if not async_task.skipping_cn_preprocessor: | |
cn_img = extras.face_crop.crop_image(cn_img) | |
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 | |
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) | |
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) | |
if async_task.debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) | |
all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] | |
if len(all_ip_tasks) > 0: | |
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) | |
def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False): | |
if 'subtle' in uov_method: | |
denoising_strength = 0.5 | |
if 'strong' in uov_method: | |
denoising_strength = 0.85 | |
if async_task.overwrite_vary_strength > 0: | |
denoising_strength = async_task.overwrite_vary_strength | |
shape_ceil = get_image_shape_ceil(uov_input_image) | |
if shape_ceil < 1024: | |
print(f'[Vary] Image is resized because it is too small.') | |
shape_ceil = 1024 | |
elif shape_ceil > 2048: | |
print(f'[Vary] Image is resized because it is too big.') | |
shape_ceil = 2048 | |
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) | |
initial_pixels = core.numpy_to_pytorch(uov_input_image) | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'VAE encoding ...') | |
candidate_vae, _ = pipeline.get_candidate_vae( | |
steps=async_task.steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=async_task.refiner_swap_method | |
) | |
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) | |
B, C, H, W = initial_latent['samples'].shape | |
width = W * 8 | |
height = H * 8 | |
print(f'Final resolution is {str((width, height))}.') | |
return uov_input_image, denoising_strength, initial_latent, width, height, current_progress | |
def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image, | |
inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch, | |
inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False, | |
advance_progress=False): | |
if not skip_apply_outpaint: | |
inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask) | |
inpaint_worker.current_task = inpaint_worker.InpaintWorker( | |
image=inpaint_image, | |
mask=inpaint_mask, | |
use_fill=denoising_strength > 0.99, | |
k=inpaint_respective_field | |
) | |
if async_task.debugging_inpaint_preprocessor: | |
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, | |
async_task.black_out_nsfw, do_not_show_finished_images=True) | |
raise EarlyReturnException | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'VAE Inpaint encoding ...') | |
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) | |
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) | |
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) | |
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( | |
steps=async_task.steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=async_task.refiner_swap_method | |
) | |
latent_inpaint, latent_mask = core.encode_vae_inpaint( | |
mask=inpaint_pixel_mask, | |
vae=candidate_vae, | |
pixels=inpaint_pixel_image) | |
latent_swap = None | |
if candidate_vae_swap is not None: | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'VAE SD15 encoding ...') | |
latent_swap = core.encode_vae( | |
vae=candidate_vae_swap, | |
pixels=inpaint_pixel_fill)['samples'] | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'VAE encoding ...') | |
latent_fill = core.encode_vae( | |
vae=candidate_vae, | |
pixels=inpaint_pixel_fill)['samples'] | |
inpaint_worker.current_task.load_latent( | |
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) | |
if inpaint_parameterized: | |
pipeline.final_unet = inpaint_worker.current_task.patch( | |
inpaint_head_model_path=inpaint_head_model_path, | |
inpaint_latent=latent_inpaint, | |
inpaint_latent_mask=latent_mask, | |
model=pipeline.final_unet | |
) | |
if not inpaint_disable_initial_latent: | |
initial_latent = {'samples': latent_fill} | |
B, C, H, W = latent_fill.shape | |
height, width = H * 8, W * 8 | |
final_height, final_width = inpaint_worker.current_task.image.shape[:2] | |
print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.') | |
return denoising_strength, initial_latent, width, height, current_progress | |
def apply_outpaint(async_task, inpaint_image, inpaint_mask): | |
if len(async_task.outpaint_selections) > 0: | |
H, W, C = inpaint_image.shape | |
if 'top' in async_task.outpaint_selections: | |
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', | |
constant_values=255) | |
if 'bottom' in async_task.outpaint_selections: | |
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', | |
constant_values=255) | |
H, W, C = inpaint_image.shape | |
if 'left' in async_task.outpaint_selections: | |
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant', | |
constant_values=255) | |
if 'right' in async_task.outpaint_selections: | |
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant', | |
constant_values=255) | |
inpaint_image = np.ascontiguousarray(inpaint_image.copy()) | |
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) | |
async_task.inpaint_strength = 1.0 | |
async_task.inpaint_respective_field = 1.0 | |
return inpaint_image, inpaint_mask | |
def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False): | |
H, W, C = uov_input_image.shape | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...') | |
uov_input_image = perform_upscale(uov_input_image) | |
print(f'Image upscaled.') | |
if '1.5x' in uov_method: | |
f = 1.5 | |
elif '2x' in uov_method: | |
f = 2.0 | |
else: | |
f = 1.0 | |
shape_ceil = get_shape_ceil(H * f, W * f) | |
if shape_ceil < 1024: | |
print(f'[Upscale] Image is resized because it is too small.') | |
uov_input_image = set_image_shape_ceil(uov_input_image, 1024) | |
shape_ceil = 1024 | |
else: | |
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) | |
image_is_super_large = shape_ceil > 2800 | |
if 'fast' in uov_method: | |
direct_return = True | |
elif image_is_super_large: | |
print('Image is too large. Directly returned the SR image. ' | |
'Usually directly return SR image at 4K resolution ' | |
'yields better results than SDXL diffusion.') | |
direct_return = True | |
else: | |
direct_return = False | |
if direct_return: | |
return direct_return, uov_input_image, None, None, None, None, None, current_progress | |
tiled = True | |
denoising_strength = 0.382 | |
if async_task.overwrite_upscale_strength > 0: | |
denoising_strength = async_task.overwrite_upscale_strength | |
initial_pixels = core.numpy_to_pytorch(uov_input_image) | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'VAE encoding ...') | |
candidate_vae, _ = pipeline.get_candidate_vae( | |
steps=async_task.steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=async_task.refiner_swap_method | |
) | |
initial_latent = core.encode_vae( | |
vae=candidate_vae, | |
pixels=initial_pixels, tiled=True) | |
B, C, H, W = initial_latent['samples'].shape | |
width = W * 8 | |
height = H * 8 | |
print(f'Final resolution is {str((width, height))}.') | |
return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress | |
def apply_overrides(async_task, steps, height, width): | |
if async_task.overwrite_step > 0: | |
steps = async_task.overwrite_step | |
switch = int(round(async_task.steps * async_task.refiner_switch)) | |
if async_task.overwrite_switch > 0: | |
switch = async_task.overwrite_switch | |
if async_task.overwrite_width > 0: | |
width = async_task.overwrite_width | |
if async_task.overwrite_height > 0: | |
height = async_task.overwrite_height | |
return steps, switch, width, height | |
def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style, | |
use_synthetic_refiner, current_progress, advance_progress=False): | |
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') | |
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') | |
prompt = prompts[0] | |
negative_prompt = negative_prompts[0] | |
if prompt == '': | |
# disable expansion when empty since it is not meaningful and influences image prompt | |
use_expansion = False | |
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] | |
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'Loading models ...') | |
lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, | |
async_task.performance_selection) | |
loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras, | |
modules.config.default_max_lora_number, | |
lora_filenames=lora_filenames) | |
loras += async_task.performance_loras | |
pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name, | |
base_model_name=async_task.base_model_name, | |
loras=loras, base_model_additional_loras=base_model_additional_loras, | |
use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name) | |
pipeline.set_clip_skip(async_task.clip_skip) | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'Processing prompts ...') | |
tasks = [] | |
for i in range(image_number): | |
if disable_seed_increment: | |
task_seed = async_task.seed % (constants.MAX_SEED + 1) | |
else: | |
task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not | |
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future | |
task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order) | |
task_prompt = apply_arrays(task_prompt, i) | |
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order) | |
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt | |
in | |
extra_positive_prompts] | |
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt | |
in | |
extra_negative_prompts] | |
positive_basic_workloads = [] | |
negative_basic_workloads = [] | |
task_styles = async_task.style_selections.copy() | |
if use_style: | |
placeholder_replaced = False | |
for j, s in enumerate(task_styles): | |
if s == random_style_name: | |
s = get_random_style(task_rng) | |
task_styles[j] = s | |
p, n, style_has_placeholder = apply_style(s, positive=task_prompt) | |
if style_has_placeholder: | |
placeholder_replaced = True | |
positive_basic_workloads = positive_basic_workloads + p | |
negative_basic_workloads = negative_basic_workloads + n | |
if not placeholder_replaced: | |
positive_basic_workloads = [task_prompt] + positive_basic_workloads | |
else: | |
positive_basic_workloads.append(task_prompt) | |
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. | |
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts | |
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts | |
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) | |
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) | |
tasks.append(dict( | |
task_seed=task_seed, | |
task_prompt=task_prompt, | |
task_negative_prompt=task_negative_prompt, | |
positive=positive_basic_workloads, | |
negative=negative_basic_workloads, | |
expansion='', | |
c=None, | |
uc=None, | |
positive_top_k=len(positive_basic_workloads), | |
negative_top_k=len(negative_basic_workloads), | |
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), | |
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), | |
styles=task_styles | |
)) | |
if use_expansion: | |
if advance_progress: | |
current_progress += 1 | |
for i, t in enumerate(tasks): | |
progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...') | |
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) | |
print(f'[Prompt Expansion] {expansion}') | |
t['expansion'] = expansion | |
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. | |
if advance_progress: | |
current_progress += 1 | |
for i, t in enumerate(tasks): | |
progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...') | |
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) | |
if advance_progress: | |
current_progress += 1 | |
for i, t in enumerate(tasks): | |
if abs(float(async_task.cfg_scale) - 1.0) < 1e-4: | |
t['uc'] = pipeline.clone_cond(t['c']) | |
else: | |
progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...') | |
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) | |
return tasks, use_expansion, loras, current_progress | |
def apply_freeu(async_task): | |
print(f'FreeU is enabled!') | |
pipeline.final_unet = core.apply_freeu( | |
pipeline.final_unet, | |
async_task.freeu_b1, | |
async_task.freeu_b2, | |
async_task.freeu_s1, | |
async_task.freeu_s2 | |
) | |
def patch_discrete(unet, scheduler_name): | |
return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0] | |
def patch_edm(unet, scheduler_name): | |
return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0] | |
def patch_samplers(async_task): | |
final_scheduler_name = async_task.scheduler_name | |
if async_task.scheduler_name in ['lcm', 'tcd']: | |
final_scheduler_name = 'sgm_uniform' | |
if pipeline.final_unet is not None: | |
pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name) | |
if pipeline.final_refiner_unet is not None: | |
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name) | |
elif async_task.scheduler_name == 'edm_playground_v2.5': | |
final_scheduler_name = 'karras' | |
if pipeline.final_unet is not None: | |
pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name) | |
if pipeline.final_refiner_unet is not None: | |
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name) | |
return final_scheduler_name | |
def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False): | |
print('Enter Hyper-SD mode.') | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...') | |
async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] | |
if async_task.refiner_model_name != 'None': | |
print(f'Refiner disabled in Hyper-SD mode.') | |
async_task.refiner_model_name = 'None' | |
async_task.sampler_name = 'dpmpp_sde_gpu' | |
async_task.scheduler_name = 'karras' | |
async_task.sharpness = 0.0 | |
async_task.cfg_scale = 1.0 | |
async_task.adaptive_cfg = 1.0 | |
async_task.refiner_switch = 1.0 | |
async_task.adm_scaler_positive = 1.0 | |
async_task.adm_scaler_negative = 1.0 | |
async_task.adm_scaler_end = 0.0 | |
return current_progress | |
def set_lightning_defaults(async_task, current_progress, advance_progress=False): | |
print('Enter Lightning mode.') | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, 1, 'Downloading Lightning components ...') | |
async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] | |
if async_task.refiner_model_name != 'None': | |
print(f'Refiner disabled in Lightning mode.') | |
async_task.refiner_model_name = 'None' | |
async_task.sampler_name = 'euler' | |
async_task.scheduler_name = 'sgm_uniform' | |
async_task.sharpness = 0.0 | |
async_task.cfg_scale = 1.0 | |
async_task.adaptive_cfg = 1.0 | |
async_task.refiner_switch = 1.0 | |
async_task.adm_scaler_positive = 1.0 | |
async_task.adm_scaler_negative = 1.0 | |
async_task.adm_scaler_end = 0.0 | |
return current_progress | |
def set_lcm_defaults(async_task, current_progress, advance_progress=False): | |
print('Enter LCM mode.') | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, 1, 'Downloading LCM components ...') | |
async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] | |
if async_task.refiner_model_name != 'None': | |
print(f'Refiner disabled in LCM mode.') | |
async_task.refiner_model_name = 'None' | |
async_task.sampler_name = 'lcm' | |
async_task.scheduler_name = 'lcm' | |
async_task.sharpness = 0.0 | |
async_task.cfg_scale = 1.0 | |
async_task.adaptive_cfg = 1.0 | |
async_task.refiner_switch = 1.0 | |
async_task.adm_scaler_positive = 1.0 | |
async_task.adm_scaler_negative = 1.0 | |
async_task.adm_scaler_end = 0.0 | |
return current_progress | |
def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, | |
controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask, | |
inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path, | |
skip_prompt_processing, use_synthetic_refiner): | |
if (async_task.current_tab == 'uov' or ( | |
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \ | |
and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None: | |
async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale( | |
async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection, | |
async_task.steps, 1, skip_prompt_processing=skip_prompt_processing) | |
if (async_task.current_tab == 'inpaint' or ( | |
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \ | |
and isinstance(async_task.inpaint_input_image, dict): | |
inpaint_image = async_task.inpaint_input_image['image'] | |
inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0] | |
if async_task.inpaint_advanced_masking_checkbox: | |
if isinstance(async_task.inpaint_mask_image_upload, dict): | |
if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray) | |
and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray) | |
and async_task.inpaint_mask_image_upload['image'].ndim == 3): | |
async_task.inpaint_mask_image_upload = np.maximum( | |
async_task.inpaint_mask_image_upload['image'], | |
async_task.inpaint_mask_image_upload['mask']) | |
if isinstance(async_task.inpaint_mask_image_upload, | |
np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3: | |
H, W, C = inpaint_image.shape | |
async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload, | |
width=W, height=H) | |
async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2) | |
async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype( | |
np.uint8) * 255 | |
inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload) | |
if int(async_task.inpaint_erode_or_dilate) != 0: | |
inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate) | |
if async_task.invert_mask_checkbox: | |
inpaint_mask = 255 - inpaint_mask | |
inpaint_image = HWC3(inpaint_image) | |
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ | |
and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0): | |
progressbar(async_task, 1, 'Downloading upscale models ...') | |
modules.config.downloading_upscale_model() | |
if inpaint_parameterized: | |
progressbar(async_task, 1, 'Downloading inpainter ...') | |
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( | |
async_task.inpaint_engine) | |
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] | |
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') | |
if async_task.refiner_model_name == 'None': | |
use_synthetic_refiner = True | |
async_task.refiner_switch = 0.8 | |
else: | |
inpaint_head_model_path, inpaint_patch_model_path = None, None | |
print(f'[Inpaint] Parameterized inpaint is disabled.') | |
if async_task.inpaint_additional_prompt != '': | |
if async_task.prompt == '': | |
async_task.prompt = async_task.inpaint_additional_prompt | |
else: | |
async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt | |
goals.append('inpaint') | |
if async_task.current_tab == 'ip' or \ | |
async_task.mixing_image_prompt_and_vary_upscale or \ | |
async_task.mixing_image_prompt_and_inpaint: | |
goals.append('cn') | |
progressbar(async_task, 1, 'Downloading control models ...') | |
if len(async_task.cn_tasks[flags.cn_canny]) > 0: | |
controlnet_canny_path = modules.config.downloading_controlnet_canny() | |
if len(async_task.cn_tasks[flags.cn_cpds]) > 0: | |
controlnet_cpds_path = modules.config.downloading_controlnet_cpds() | |
if len(async_task.cn_tasks[flags.cn_ip]) > 0: | |
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') | |
if len(async_task.cn_tasks[flags.cn_ip_face]) > 0: | |
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( | |
'face') | |
if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None: | |
goals.append('enhance') | |
skip_prompt_processing = True | |
async_task.enhance_input_image = HWC3(async_task.enhance_input_image) | |
return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner | |
def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress, | |
advance_progress=False, skip_prompt_processing=False): | |
uov_input_image = HWC3(uov_input_image) | |
if 'vary' in uov_method: | |
goals.append('vary') | |
elif 'upscale' in uov_method: | |
goals.append('upscale') | |
if 'fast' in uov_method: | |
skip_prompt_processing = True | |
steps = 0 | |
else: | |
steps = performance.steps_uov() | |
if advance_progress: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'Downloading upscale models ...') | |
modules.config.downloading_upscale_model() | |
return uov_input_image, skip_prompt_processing, steps | |
def prepare_enhance_prompt(prompt: str, fallback_prompt: str): | |
if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0: | |
prompt = fallback_prompt | |
return prompt | |
def stop_processing(async_task, processing_start_time): | |
async_task.processing = False | |
processing_time = time.perf_counter() - processing_start_time | |
print(f'Processing time (total): {processing_time:.2f} seconds') | |
def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, | |
current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent, | |
inpaint_engine, inpaint_respective_field, inpaint_strength, | |
prompt, negative_prompt, final_scheduler_name, goals, height, img, mask, | |
preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style, | |
use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True): | |
base_model_additional_loras = [] | |
inpaint_head_model_path = None | |
inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail | |
initial_latent = None | |
prompt = prepare_enhance_prompt(prompt, async_task.prompt) | |
negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt) | |
if 'vary' in goals: | |
img, denoising_strength, initial_latent, width, height, current_progress = apply_vary( | |
async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress) | |
if 'upscale' in goals: | |
direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( | |
async_task, img, async_task.enhance_uov_method, switch, current_progress) | |
if direct_return: | |
d = [('Upscale (Fast)', 'upscale_fast', '2x')] | |
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: | |
progressbar(async_task, current_progress, 'Checking for NSFW content ...') | |
img = default_censor(img) | |
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') | |
uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) | |
yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, | |
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) | |
return current_progress, img, prompt, negative_prompt | |
if 'inpaint' in goals and inpaint_parameterized: | |
progressbar(async_task, current_progress, 'Downloading inpainter ...') | |
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( | |
inpaint_engine) | |
if inpaint_patch_model_path not in base_model_additional_loras: | |
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] | |
progressbar(async_task, current_progress, 'Preparing enhance prompts ...') | |
# positive and negative conditioning aren't available here anymore, process prompt again | |
tasks_enhance, use_expansion, loras, current_progress = process_prompt( | |
async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, | |
use_expansion, use_style, use_synthetic_refiner, current_progress) | |
task_enhance = tasks_enhance[0] | |
# TODO could support vary, upscale and CN in the future | |
# if 'cn' in goals: | |
# apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width) | |
if async_task.freeu_enabled: | |
apply_freeu(async_task) | |
patch_samplers(async_task) | |
if 'inpaint' in goals: | |
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( | |
async_task, None, inpaint_head_model_path, img, mask, | |
inpaint_parameterized, inpaint_strength, | |
inpaint_respective_field, switch, inpaint_disable_initial_latent, | |
current_progress, True) | |
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, | |
controlnet_cpds_path, current_task_id, denoising_strength, | |
final_scheduler_name, goals, initial_latent, steps, switch, | |
task_enhance['c'], task_enhance['uc'], task_enhance, loras, | |
tiled, use_expansion, width, height, current_progress, | |
preparation_steps, total_count, show_intermediate_results, | |
persist_image) | |
del task_enhance['c'], task_enhance['uc'] # Save memory | |
return current_progress, imgs[0], prompt, negative_prompt | |
def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, | |
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, | |
prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled, | |
total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True): | |
# reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting | |
inpaint_worker.current_task = None | |
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) | |
goals_enhance = [] | |
img, skip_prompt_processing, steps = prepare_upscale( | |
async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection, | |
enhance_steps, current_progress) | |
steps, _, _, _ = apply_overrides(async_task, steps, height, width) | |
exception_result = '' | |
if len(goals_enhance) > 0: | |
try: | |
current_progress, img, prompt, negative_prompt = process_enhance( | |
all_steps, async_task, callback, controlnet_canny_path, | |
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False, | |
'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name, | |
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count, | |
use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image) | |
except ldm_patched.modules.model_management.InterruptProcessingException: | |
if async_task.last_stop == 'skip': | |
print('User skipped') | |
async_task.last_stop = False | |
# also skip all enhance steps for this image, but add the steps to the progress bar | |
if async_task.enhance_uov_processing_order == flags.enhancement_uov_before: | |
done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps | |
exception_result = 'continue' | |
else: | |
print('User stopped') | |
exception_result = 'break' | |
finally: | |
done_steps_upscaling += steps | |
return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result | |
def handler(async_task: AsyncTask): | |
preparation_start_time = time.perf_counter() | |
async_task.processing = True | |
async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections] | |
base_model_additional_loras = [] | |
async_task.uov_method = async_task.uov_method.casefold() | |
async_task.enhance_uov_method = async_task.enhance_uov_method.casefold() | |
if fooocus_expansion in async_task.style_selections: | |
use_expansion = True | |
async_task.style_selections.remove(fooocus_expansion) | |
else: | |
use_expansion = False | |
use_style = len(async_task.style_selections) > 0 | |
if async_task.base_model_name == async_task.refiner_model_name: | |
print(f'Refiner disabled because base model and refiner are same.') | |
async_task.refiner_model_name = 'None' | |
current_progress = 0 | |
if async_task.performance_selection == Performance.EXTREME_SPEED: | |
set_lcm_defaults(async_task, current_progress, advance_progress=True) | |
elif async_task.performance_selection == Performance.LIGHTNING: | |
set_lightning_defaults(async_task, current_progress, advance_progress=True) | |
elif async_task.performance_selection == Performance.HYPER_SD: | |
set_hyper_sd_defaults(async_task, current_progress, advance_progress=True) | |
print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}') | |
print(f'[Parameters] CLIP Skip = {async_task.clip_skip}') | |
print(f'[Parameters] Sharpness = {async_task.sharpness}') | |
print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}') | |
print(f'[Parameters] ADM Scale = ' | |
f'{async_task.adm_scaler_positive} : ' | |
f'{async_task.adm_scaler_negative} : ' | |
f'{async_task.adm_scaler_end}') | |
print(f'[Parameters] Seed = {async_task.seed}') | |
apply_patch_settings(async_task) | |
print(f'[Parameters] CFG = {async_task.cfg_scale}') | |
initial_latent = None | |
denoising_strength = 1.0 | |
tiled = False | |
width, height = async_task.aspect_ratios_selection.replace('Γ', ' ').split(' ')[:2] | |
width, height = int(width), int(height) | |
skip_prompt_processing = False | |
inpaint_worker.current_task = None | |
inpaint_parameterized = async_task.inpaint_engine != 'None' | |
inpaint_image = None | |
inpaint_mask = None | |
inpaint_head_model_path = None | |
use_synthetic_refiner = False | |
controlnet_canny_path = None | |
controlnet_cpds_path = None | |
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None | |
goals = [] | |
tasks = [] | |
current_progress = 1 | |
if async_task.input_image_checkbox: | |
base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input( | |
async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, | |
goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path, | |
ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner) | |
# Load or unload CNs | |
progressbar(async_task, current_progress, 'Loading control models ...') | |
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) | |
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) | |
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) | |
async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width) | |
print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}') | |
print(f'[Parameters] Steps = {async_task.steps} - {switch}') | |
progressbar(async_task, current_progress, 'Initializing ...') | |
loras = async_task.loras | |
if not skip_prompt_processing: | |
tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt, | |
base_model_additional_loras, async_task.image_number, | |
async_task.disable_seed_increment, use_expansion, use_style, | |
use_synthetic_refiner, current_progress, advance_progress=True) | |
if len(goals) > 0: | |
current_progress += 1 | |
progressbar(async_task, current_progress, 'Image processing ...') | |
should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0) | |
if 'vary' in goals: | |
async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary( | |
async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch, | |
current_progress) | |
if 'upscale' in goals: | |
direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( | |
async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress, | |
advance_progress=True) | |
if direct_return: | |
d = [('Upscale (Fast)', 'upscale_fast', '2x')] | |
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: | |
progressbar(async_task, 100, 'Checking for NSFW content ...') | |
async_task.uov_input_image = default_censor(async_task.uov_input_image) | |
progressbar(async_task, 100, 'Saving image to system ...') | |
uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) | |
yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, | |
do_not_show_finished_images=True) | |
return | |
if 'inpaint' in goals: | |
try: | |
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(async_task, | |
initial_latent, | |
inpaint_head_model_path, | |
inpaint_image, | |
inpaint_mask, | |
inpaint_parameterized, | |
async_task.inpaint_strength, | |
async_task.inpaint_respective_field, | |
switch, | |
async_task.inpaint_disable_initial_latent, | |
current_progress, | |
advance_progress=True) | |
except EarlyReturnException: | |
return | |
if 'cn' in goals: | |
apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress) | |
if async_task.debugging_cn_preprocessor: | |
return | |
if async_task.freeu_enabled: | |
apply_freeu(async_task) | |
# async_task.steps can have value of uov steps here when upscale has been applied | |
steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width) | |
images_to_enhance = [] | |
if 'enhance' in goals: | |
async_task.image_number = 1 | |
images_to_enhance += [async_task.enhance_input_image] | |
height, width, _ = async_task.enhance_input_image.shape | |
# input image already provided, processing is skipped | |
steps = 0 | |
yield_result(async_task, async_task.enhance_input_image, current_progress, async_task.black_out_nsfw, False, | |
async_task.disable_intermediate_results) | |
all_steps = steps * async_task.image_number | |
if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold(): | |
enhance_upscale_steps = async_task.performance_selection.steps() | |
if 'upscale' in async_task.enhance_uov_method: | |
if 'fast' in async_task.enhance_uov_method: | |
enhance_upscale_steps = 0 | |
else: | |
enhance_upscale_steps = async_task.performance_selection.steps_uov() | |
enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width) | |
enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps | |
all_steps += enhance_upscale_steps_total | |
if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0: | |
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) | |
all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps | |
all_steps = max(all_steps, 1) | |
print(f'[Parameters] Denoising Strength = {denoising_strength}') | |
if isinstance(initial_latent, dict) and 'samples' in initial_latent: | |
log_shape = initial_latent['samples'].shape | |
else: | |
log_shape = f'Image Space {(height, width)}' | |
print(f'[Parameters] Initial Latent shape: {log_shape}') | |
preparation_time = time.perf_counter() - preparation_start_time | |
print(f'Preparation time: {preparation_time:.2f} seconds') | |
final_scheduler_name = patch_samplers(async_task) | |
print(f'Using {final_scheduler_name} scheduler.') | |
async_task.yields.append(['preview', (current_progress, 'Moving model to GPU ...', None)]) | |
processing_start_time = time.perf_counter() | |
preparation_steps = current_progress | |
total_count = async_task.image_number | |
def callback(step, x0, x, total_steps, y): | |
if step == 0: | |
async_task.callback_steps = 0 | |
async_task.callback_steps += (100 - preparation_steps) / float(all_steps) | |
async_task.yields.append(['preview', ( | |
int(current_progress + async_task.callback_steps), | |
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)]) | |
show_intermediate_results = len(tasks) > 1 or async_task.should_enhance | |
persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only | |
for current_task_id, task in enumerate(tasks): | |
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...') | |
execution_start_time = time.perf_counter() | |
try: | |
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, | |
controlnet_cpds_path, current_task_id, | |
denoising_strength, final_scheduler_name, goals, | |
initial_latent, async_task.steps, switch, task['c'], | |
task['uc'], task, loras, tiled, use_expansion, width, | |
height, current_progress, preparation_steps, | |
async_task.image_number, show_intermediate_results, | |
persist_image) | |
current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) | |
images_to_enhance += imgs | |
except ldm_patched.modules.model_management.InterruptProcessingException: | |
if async_task.last_stop == 'skip': | |
print('User skipped') | |
async_task.last_stop = False | |
continue | |
else: | |
print('User stopped') | |
break | |
del task['c'], task['uc'] # Save memory | |
execution_time = time.perf_counter() - execution_start_time | |
print(f'Generating and saving time: {execution_time:.2f} seconds') | |
if not async_task.should_enhance: | |
print(f'[Enhance] Skipping, preconditions aren\'t met') | |
stop_processing(async_task, processing_start_time) | |
return | |
progressbar(async_task, current_progress, 'Processing enhance ...') | |
active_enhance_tabs = len(async_task.enhance_ctrls) | |
should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold() | |
enhance_uov_before = False | |
enhance_uov_after = False | |
if should_process_enhance_uov: | |
active_enhance_tabs += 1 | |
enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before | |
enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after | |
total_count = len(images_to_enhance) * active_enhance_tabs | |
async_task.images_to_enhance_count = len(images_to_enhance) | |
base_progress = current_progress | |
current_task_id = -1 | |
done_steps_upscaling = 0 | |
done_steps_inpainting = 0 | |
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) | |
exception_result = None | |
for index, img in enumerate(images_to_enhance): | |
async_task.enhance_stats[index] = 0 | |
enhancement_image_start_time = time.perf_counter() | |
last_enhance_prompt = async_task.prompt | |
last_enhance_negative_prompt = async_task.negative_prompt | |
if enhance_uov_before: | |
current_task_id += 1 | |
persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0 | |
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( | |
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, | |
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, | |
async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps, | |
switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image) | |
async_task.enhance_stats[index] += 1 | |
if exception_result == 'continue': | |
continue | |
elif exception_result == 'break': | |
break | |
# inpaint for all other tabs | |
for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls: | |
current_task_id += 1 | |
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) | |
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...') | |
enhancement_task_start_time = time.perf_counter() | |
is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after | |
persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image | |
extras = {} | |
if enhance_mask_model == 'sam': | |
print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"') | |
elif enhance_mask_model == 'u2net_cloth_seg': | |
extras['cloth_category'] = enhance_mask_cloth_category | |
mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image( | |
img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions( | |
dino_prompt=enhance_mask_dino_prompt_text, | |
dino_box_threshold=enhance_mask_box_threshold, | |
dino_text_threshold=enhance_mask_text_threshold, | |
dino_erode_or_dilate=async_task.dino_erode_or_dilate, | |
dino_debug=async_task.debugging_dino, | |
max_detections=enhance_mask_sam_max_detections, | |
model_type=enhance_mask_sam_model, | |
)) | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
if int(enhance_inpaint_erode_or_dilate) != 0: | |
mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate) | |
if enhance_mask_invert: | |
mask = 255 - mask | |
if async_task.debugging_enhance_masks_checkbox: | |
async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)]) | |
yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, | |
async_task.disable_intermediate_results) | |
async_task.enhance_stats[index] += 1 | |
print(f'[Enhance] {dino_detection_count} boxes detected') | |
print(f'[Enhance] {sam_detection_count} segments detected in boxes') | |
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask') | |
if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0): | |
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping') | |
continue | |
goals_enhance = ['inpaint'] | |
try: | |
current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance( | |
all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, | |
current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent, | |
enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength, | |
enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask, | |
preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style, | |
use_synthetic_refiner, width, persist_image=persist_image) | |
async_task.enhance_stats[index] += 1 | |
if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after | |
and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled): | |
if enhance_prompt_processed != '': | |
last_enhance_prompt = enhance_prompt_processed | |
if enhance_negative_prompt_processed != '': | |
last_enhance_negative_prompt = enhance_negative_prompt_processed | |
except ldm_patched.modules.model_management.InterruptProcessingException: | |
if async_task.last_stop == 'skip': | |
print('User skipped') | |
async_task.last_stop = False | |
continue | |
else: | |
print('User stopped') | |
exception_result = 'break' | |
break | |
finally: | |
done_steps_inpainting += enhance_steps | |
enhancement_task_time = time.perf_counter() - enhancement_task_start_time | |
print(f'Enhancement time: {enhancement_task_time:.2f} seconds') | |
if exception_result == 'break': | |
break | |
if enhance_uov_after: | |
current_task_id += 1 | |
# last step in enhance, always save | |
persist_image = True | |
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( | |
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, | |
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, | |
last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img, | |
preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, | |
width, persist_image) | |
async_task.enhance_stats[index] += 1 | |
if exception_result == 'continue': | |
continue | |
elif exception_result == 'break': | |
break | |
enhancement_image_time = time.perf_counter() - enhancement_image_start_time | |
print(f'Enhancement image time: {enhancement_image_time:.2f} seconds') | |
stop_processing(async_task, processing_start_time) | |
return | |
while True: | |
time.sleep(0.01) | |
if len(async_tasks) > 0: | |
task = async_tasks.pop(0) | |
try: | |
handler(task) | |
if task.generate_image_grid: | |
build_image_wall(task) | |
task.yields.append(['finish', task.results]) | |
pipeline.prepare_text_encoder(async_call=True) | |
except: | |
traceback.print_exc() | |
task.yields.append(['finish', task.results]) | |
finally: | |
if pid in modules.patch.patch_settings: | |
del modules.patch.patch_settings[pid] | |
pass | |
threading.Thread(target=worker, daemon=True).start() | |