Spaces:
Runtime error
Runtime error
# https://github.com/city96/SD-Latent-Interposer/blob/main/interposer.py | |
import os | |
import safetensors.torch as sf | |
import torch | |
import torch.nn as nn | |
import ldm_patched.modules.model_management | |
from ldm_patched.modules.model_patcher import ModelPatcher | |
from modules.config import path_vae_approx | |
class ResBlock(nn.Module): | |
"""Block with residuals""" | |
def __init__(self, ch): | |
super().__init__() | |
self.join = nn.ReLU() | |
self.norm = nn.BatchNorm2d(ch) | |
self.long = nn.Sequential( | |
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), | |
nn.SiLU(), | |
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), | |
nn.SiLU(), | |
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), | |
nn.Dropout(0.1) | |
) | |
def forward(self, x): | |
x = self.norm(x) | |
return self.join(self.long(x) + x) | |
class ExtractBlock(nn.Module): | |
"""Increase no. of channels by [out/in]""" | |
def __init__(self, ch_in, ch_out): | |
super().__init__() | |
self.join = nn.ReLU() | |
self.short = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1) | |
self.long = nn.Sequential( | |
nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1), | |
nn.SiLU(), | |
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1), | |
nn.SiLU(), | |
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1), | |
nn.Dropout(0.1) | |
) | |
def forward(self, x): | |
return self.join(self.long(x) + self.short(x)) | |
class InterposerModel(nn.Module): | |
"""Main neural network""" | |
def __init__(self, ch_in=4, ch_out=4, ch_mid=64, scale=1.0, blocks=12): | |
super().__init__() | |
self.ch_in = ch_in | |
self.ch_out = ch_out | |
self.ch_mid = ch_mid | |
self.blocks = blocks | |
self.scale = scale | |
self.head = ExtractBlock(self.ch_in, self.ch_mid) | |
self.core = nn.Sequential( | |
nn.Upsample(scale_factor=self.scale, mode="nearest"), | |
*[ResBlock(self.ch_mid) for _ in range(blocks)], | |
nn.BatchNorm2d(self.ch_mid), | |
nn.SiLU(), | |
) | |
self.tail = nn.Conv2d(self.ch_mid, self.ch_out, kernel_size=3, stride=1, padding=1) | |
def forward(self, x): | |
y = self.head(x) | |
z = self.core(y) | |
return self.tail(z) | |
vae_approx_model = None | |
vae_approx_filename = os.path.join(path_vae_approx, 'xl-to-v1_interposer-v4.0.safetensors') | |
def parse(x): | |
global vae_approx_model | |
x_origin = x.clone() | |
if vae_approx_model is None: | |
model = InterposerModel() | |
model.eval() | |
sd = sf.load_file(vae_approx_filename) | |
model.load_state_dict(sd) | |
fp16 = ldm_patched.modules.model_management.should_use_fp16() | |
if fp16: | |
model = model.half() | |
vae_approx_model = ModelPatcher( | |
model=model, | |
load_device=ldm_patched.modules.model_management.get_torch_device(), | |
offload_device=torch.device('cpu') | |
) | |
vae_approx_model.dtype = torch.float16 if fp16 else torch.float32 | |
ldm_patched.modules.model_management.load_model_gpu(vae_approx_model) | |
x = x_origin.to(device=vae_approx_model.load_device, dtype=vae_approx_model.dtype) | |
x = vae_approx_model.model(x).to(x_origin) | |
return x | |