Spaces:
Running
Running
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
-
from accelerate import
|
5 |
|
6 |
# Configuración para usar bfloat16 y CUDA si está disponible
|
7 |
dtype = torch.bfloat16
|
@@ -13,44 +13,43 @@ pipe = None
|
|
13 |
def load_model():
|
14 |
global pipe
|
15 |
if pipe is None:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Cargar el modelo en la GPU sin intentar acceder a `named_parameters`
|
22 |
pipe = load_checkpoint_and_dispatch(
|
23 |
pipe,
|
24 |
"black-forest-labs/FLUX.1-schnell",
|
25 |
-
device_map="auto",
|
26 |
-
offload_folder=None
|
27 |
-
)
|
|
|
28 |
|
29 |
MAX_SEED = torch.iinfo(torch.int32).max
|
30 |
-
MAX_IMAGE_SIZE = 2048
|
31 |
|
32 |
-
|
|
|
33 |
load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia
|
34 |
|
35 |
if randomize_seed:
|
36 |
seed = torch.randint(0, MAX_SEED, (1,)).item()
|
37 |
-
generator = torch.Generator(device
|
38 |
|
39 |
images = []
|
40 |
for _ in range(num_images):
|
41 |
image = pipe(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
).images[0]
|
49 |
images.append(image)
|
50 |
|
51 |
return images, seed
|
52 |
|
53 |
-
# Gradio Interface
|
54 |
examples = [
|
55 |
"a tiny astronaut hatching from an egg on the moon",
|
56 |
"a cat holding a sign that says hello world",
|
@@ -73,21 +72,81 @@ with gr.Blocks(css=css) as demo:
|
|
73 |
""")
|
74 |
|
75 |
with gr.Row():
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery")
|
80 |
|
81 |
with gr.Accordion("Advanced Settings", open=False):
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
gr.Examples(
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# Crear un enlace público con share=True
|
93 |
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
+
from accelerate import load_checkpoint_and_dispatch
|
5 |
|
6 |
# Configuración para usar bfloat16 y CUDA si está disponible
|
7 |
dtype = torch.bfloat16
|
|
|
13 |
def load_model():
|
14 |
global pipe
|
15 |
if pipe is None:
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(
|
17 |
+
"black-forest-labs/FLUX.1-schnell",
|
18 |
+
torch_dtype=dtype
|
19 |
+
)
|
20 |
+
# Despachar los pesos a la GPU, evitando acceder a named_parameters
|
|
|
21 |
pipe = load_checkpoint_and_dispatch(
|
22 |
pipe,
|
23 |
"black-forest-labs/FLUX.1-schnell",
|
24 |
+
device_map="auto", # Automatiza el uso de RAM y GPU
|
25 |
+
offload_folder=None # Evita que se almacenen los pesos temporalmente en el disco
|
26 |
+
)
|
27 |
+
pipe.to(device)
|
28 |
|
29 |
MAX_SEED = torch.iinfo(torch.int32).max
|
|
|
30 |
|
31 |
+
@gr.Interface()
|
32 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1):
|
33 |
load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia
|
34 |
|
35 |
if randomize_seed:
|
36 |
seed = torch.randint(0, MAX_SEED, (1,)).item()
|
37 |
+
generator = torch.Generator(device).manual_seed(seed)
|
38 |
|
39 |
images = []
|
40 |
for _ in range(num_images):
|
41 |
image = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
width=width,
|
44 |
+
height=height,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
generator=generator,
|
47 |
+
guidance_scale=0.0
|
48 |
).images[0]
|
49 |
images.append(image)
|
50 |
|
51 |
return images, seed
|
52 |
|
|
|
53 |
examples = [
|
54 |
"a tiny astronaut hatching from an egg on the moon",
|
55 |
"a cat holding a sign that says hello world",
|
|
|
72 |
""")
|
73 |
|
74 |
with gr.Row():
|
75 |
+
|
76 |
+
prompt = gr.Text(
|
77 |
+
label="Prompt",
|
78 |
+
show_label=False,
|
79 |
+
max_lines=1,
|
80 |
+
placeholder="Enter your prompt",
|
81 |
+
container=False,
|
82 |
+
)
|
83 |
+
|
84 |
+
run_button = gr.Button("Run", scale=0)
|
85 |
|
86 |
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery")
|
87 |
|
88 |
with gr.Accordion("Advanced Settings", open=False):
|
89 |
+
|
90 |
+
seed = gr.Slider(
|
91 |
+
label="Seed",
|
92 |
+
minimum=0,
|
93 |
+
maximum=MAX_SEED,
|
94 |
+
step=1,
|
95 |
+
value=0,
|
96 |
+
)
|
97 |
+
|
98 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
|
102 |
+
width = gr.Slider(
|
103 |
+
label="Width",
|
104 |
+
minimum=256,
|
105 |
+
maximum=2048,
|
106 |
+
step=32,
|
107 |
+
value=1024,
|
108 |
+
)
|
109 |
+
|
110 |
+
height = gr.Slider(
|
111 |
+
label="Height",
|
112 |
+
minimum=256,
|
113 |
+
maximum=2048,
|
114 |
+
step=32,
|
115 |
+
value=1024,
|
116 |
+
)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
|
120 |
+
num_inference_steps = gr.Slider(
|
121 |
+
label="Number of inference steps",
|
122 |
+
minimum=1,
|
123 |
+
maximum=50,
|
124 |
+
step=1,
|
125 |
+
value=4,
|
126 |
+
)
|
127 |
+
|
128 |
+
num_images = gr.Slider(
|
129 |
+
label="Number of images",
|
130 |
+
minimum=1,
|
131 |
+
maximum=300,
|
132 |
+
step=1,
|
133 |
+
value=1,
|
134 |
+
)
|
135 |
|
136 |
+
gr.Examples(
|
137 |
+
examples = examples,
|
138 |
+
fn = infer,
|
139 |
+
inputs = [prompt],
|
140 |
+
outputs = [results, seed],
|
141 |
+
cache_examples="lazy"
|
142 |
+
)
|
143 |
+
|
144 |
+
gr.on(
|
145 |
+
triggers=[run_button.click, prompt.submit],
|
146 |
+
fn = infer,
|
147 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps, num_images],
|
148 |
+
outputs = [results, seed]
|
149 |
+
)
|
150 |
|
151 |
# Crear un enlace público con share=True
|
152 |
demo.launch(share=True)
|