FLUX.1-schnell / app.py
Ffftdtd5dtft's picture
Update app.py
de83e05 verified
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
# Detección y configuración del dispositivo para compatibilidad con GPU o CPU
if torch.cuda.is_available():
device = "cuda" # Para GPUs NVIDIA
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_built():
device = "mps" # Para GPUs Apple Silicon (M1/M2) y otras GPUs con soporte Metal
elif hasattr(torch.backends, "rocm") and torch.backends.rocm.is_available():
device = "rocm" # Para GPUs AMD con ROCm, si está disponible
else:
device = "cpu" # En caso de no tener GPU disponible
# Definir el tipo de dato, usando bfloat16 si es compatible, si no, usar float32
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# Inicializar el modelo solo una vez y cargarlo en RAM y GPU/CPU
pipe = None
def load_model():
global pipe
if pipe is None:
# Inicializar ZeroGPU antes de cargar el modelo
init_empty_weights()
# Cargar el modelo y configurarlo para usar el dispositivo adecuado
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
)
# Despachar los pesos al dispositivo adecuado (GPU o CPU)
pipe = load_checkpoint_and_dispatch(
pipe,
"black-forest-labs/FLUX.1-schnell",
device_map="auto", # Automatiza el uso de RAM, GPU o CPU
offload_folder=None # Evita que se almacenen los pesos temporalmente en el disco
)
pipe.to(device)
MAX_SEED = torch.iinfo(torch.int32).max
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1):
load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia
if randomize_seed:
seed = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator(device).manual_seed(seed)
images = []
for _ in range(num_images):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
images.append(image)
return images, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False
)
run_button = gr.Button("Run", scale=0)
# Usamos gr.Gallery para mostrar múltiples imágenes
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048, # Ajusta el tamaño máximo según sea necesario
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048, # Ajusta el tamaño máximo según sea necesario
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
# Control para el número de imágenes a generar
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=10, # Ajusta el número máximo de imágenes según sea necesario
step=1,
value=1,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [results, seed],
cache_examples="lazy"
)
# Conectar el botón y el campo de texto a la función infer
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, num_images],
outputs=[results, seed]
)
# Crear un enlace público con share=True
demo.launch(share=True)