Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
# Detección y configuración del dispositivo para compatibilidad con GPU o CPU | |
if torch.cuda.is_available(): | |
device = "cuda" # Para GPUs NVIDIA | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_built(): | |
device = "mps" # Para GPUs Apple Silicon (M1/M2) y otras GPUs con soporte Metal | |
elif hasattr(torch.backends, "rocm") and torch.backends.rocm.is_available(): | |
device = "rocm" # Para GPUs AMD con ROCm, si está disponible | |
else: | |
device = "cpu" # En caso de no tener GPU disponible | |
# Definir el tipo de dato, usando bfloat16 si es compatible, si no, usar float32 | |
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
# Inicializar el modelo solo una vez y cargarlo en RAM y GPU/CPU | |
pipe = None | |
def load_model(): | |
global pipe | |
if pipe is None: | |
# Inicializar ZeroGPU antes de cargar el modelo | |
init_empty_weights() | |
# Cargar el modelo y configurarlo para usar el dispositivo adecuado | |
pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
) | |
# Despachar los pesos al dispositivo adecuado (GPU o CPU) | |
pipe = load_checkpoint_and_dispatch( | |
pipe, | |
"black-forest-labs/FLUX.1-schnell", | |
device_map="auto", # Automatiza el uso de RAM, GPU o CPU | |
offload_folder=None # Evita que se almacenen los pesos temporalmente en el disco | |
) | |
pipe.to(device) | |
MAX_SEED = torch.iinfo(torch.int32).max | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1): | |
load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia | |
if randomize_seed: | |
seed = torch.randint(0, MAX_SEED, (1,)).item() | |
generator = torch.Generator(device).manual_seed(seed) | |
images = [] | |
for _ in range(num_images): | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
images.append(image) | |
return images, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [schnell] | |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-schnell)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False | |
) | |
run_button = gr.Button("Run", scale=0) | |
# Usamos gr.Gallery para mostrar múltiples imágenes | |
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=2048, # Ajusta el tamaño máximo según sea necesario | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=2048, # Ajusta el tamaño máximo según sea necesario | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
# Control para el número de imágenes a generar | |
num_images = gr.Slider( | |
label="Number of images", | |
minimum=1, | |
maximum=10, # Ajusta el número máximo de imágenes según sea necesario | |
step=1, | |
value=1, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [results, seed], | |
cache_examples="lazy" | |
) | |
# Conectar el botón y el campo de texto a la función infer | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, num_images], | |
outputs=[results, seed] | |
) | |
# Crear un enlace público con share=True | |
demo.launch(share=True) |