from transformers import pipeline from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer # Load trained model model = AutoModelForSeq2SeqLM.from_pretrained("/output/reframer") tokenizer = AutoTokenizer.from_pretrained("/output/reframer") reframer = pipeline('summarization', model=model, tokenizer=tokenizer) def reframe(text, strategy): text_with_strategy = text + "Strategy: ['" + strategy + "']" return reframer(text_with_strategy)[0]['summary_text'] import gradio as gr with gr.Blocks() as demo: text = gr.Textbox(label="Original Text") radio = gr.Radio( ["thankfulness", "neutralizing", "optimism", "growth", "impermanence", "self_affirmation"], label="Strategy to use?" ) output = gr.Textbox(label="Reframed Output") radio.change(fn=reframe, inputs=[text, radio], outputs=output) demo.launch()