akhaliq's picture
akhaliq HF staff
cache and queue enabled in spaces by default
ab18492
raw
history blame
11.5 kB
import os
import sys
import gradio as gr
os.system('git clone https://github.com/openai/CLIP')
os.system('git clone https://github.com/crowsonkb/guided-diffusion')
os.system('pip install -e ./CLIP')
os.system('pip install -e ./guided-diffusion')
os.system('pip install lpips')
os.system("curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'")
import io
import math
import sys
import lpips
from PIL import Image
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
sys.path.append('./CLIP')
sys.path.append('./guided-diffusion')
import clip
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
import numpy as np
import imageio
torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'coralreef.jpeg')
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def parse_prompt(prompt):
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 2)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 1)
vals = vals + ['', '1'][len(vals):]
return vals[0], float(vals[1])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
def range_loss(input):
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn):
# Model settings
model_config = model_and_diffusion_defaults()
model_config.update({
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': str(timestep_respacing), # Modify this value to decrease the number of
# timesteps.
'image_size': 256,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 256,
'num_head_channels': 64,
'num_res_blocks': 2,
'resblock_updown': True,
'use_fp16': True,
'use_scale_shift_norm': True,
})
# Load models
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(torch.load('256x256_diffusion_uncond.pt', map_location='cpu'))
model.requires_grad_(False).eval().to(device)
for name, param in model.named_parameters():
if 'qkv' in name or 'norm' in name or 'proj' in name:
param.requires_grad_()
if model_config['use_fp16']:
model.convert_to_fp16()
clip_model = clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device)
clip_size = clip_model.visual.input_resolution
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
lpips_model = lpips.LPIPS(net='vgg').to(device)
#def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompt):
all_frames = []
prompts = [text]
if image_prompts:
image_prompts = [image_prompts.name]
else:
image_prompts = []
batch_size = 1
clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt.
tv_scale = tv_scale # Controls the smoothness of the final output.
range_scale = range_scale # Controls how far out of range RGB values are allowed to be.
cutn = cutn
n_batches = 1
if init_image:
init_image = init_image.name
else:
init_image = None # This can be an URL or Colab local path and must be in quotes.
skip_timesteps = skip_timesteps # This needs to be between approx. 200 and 500 when using an init image.
# Higher values make the output look more like the init.
init_scale = init_scale # This enhances the effect of the init image, a good value is 1000.
seed = seed
if seed is not None:
torch.manual_seed(seed)
make_cutouts = MakeCutouts(clip_size, cutn)
side_x = side_y = model_config['image_size']
target_embeds, weights = [], []
for prompt in prompts:
txt, weight = parse_prompt(prompt)
target_embeds.append(clip_model.encode_text(clip.tokenize(txt).to(device)).float())
weights.append(weight)
for prompt in image_prompts:
path, weight = parse_prompt(prompt)
img = Image.open(fetch(path)).convert('RGB')
img = TF.resize(img, min(side_x, side_y, *img.size), transforms.InterpolationMode.LANCZOS)
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = clip_model.encode_image(normalize(batch)).float()
target_embeds.append(embed)
weights.extend([weight / cutn] * cutn)
target_embeds = torch.cat(target_embeds)
weights = torch.tensor(weights, device=device)
if weights.sum().abs() < 1e-3:
raise RuntimeError('The weights must not sum to 0.')
weights /= weights.sum().abs()
init = None
if init_image is not None:
init = Image.open(fetch(init_image)).convert('RGB')
init = init.resize((side_x, side_y), Image.LANCZOS)
init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)
cur_t = None
def cond_fn(x, t, y=None):
with torch.enable_grad():
x = x.detach().requires_grad_()
n = x.shape[0]
my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
x_in = out['pred_xstart'] * fac + x * (1 - fac)
clip_in = normalize(make_cutouts(x_in.add(1).div(2)))
image_embeds = clip_model.encode_image(clip_in).float()
dists = spherical_dist_loss(image_embeds.unsqueeze(1), target_embeds.unsqueeze(0))
dists = dists.view([cutn, n, -1])
losses = dists.mul(weights).sum(2).mean(0)
tv_losses = tv_loss(x_in)
range_losses = range_loss(out['pred_xstart'])
loss = losses.sum() * clip_guidance_scale + tv_losses.sum() * tv_scale + range_losses.sum() * range_scale
if init is not None and init_scale:
init_losses = lpips_model(x_in, init)
loss = loss + init_losses.sum() * init_scale
return -torch.autograd.grad(loss, x)[0]
if model_config['timestep_respacing'].startswith('ddim'):
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.p_sample_loop_progressive
for i in range(n_batches):
cur_t = diffusion.num_timesteps - skip_timesteps - 1
samples = sample_fn(
model,
(batch_size, 3, side_y, side_x),
clip_denoised=False,
model_kwargs={},
cond_fn=cond_fn,
progress=True,
skip_timesteps=skip_timesteps,
init_image=init,
randomize_class=True,
)
for j, sample in enumerate(samples):
cur_t -= 1
if j % 1 == 0 or cur_t == -1:
print()
for k, image in enumerate(sample['pred_xstart']):
#filename = f'progress_{i * batch_size + k:05}.png'
img = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
all_frames.append(img)
tqdm.write(f'Batch {i}, step {j}, output {k}:')
#display.display(display.Image(filename))
writer = imageio.get_writer('video.mp4', fps=5)
for im in all_frames:
writer.append_data(np.array(im))
writer.close()
return img, 'video.mp4'
title = "CLIP Guided Diffusion HQ"
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=10, label="skip_timesteps"), gr.inputs.Slider(minimum=0, maximum=3000, step=1, default=600, label="clip guidance scale (Controls how much the image should look like the prompt)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="tv_scale (Controls the smoothness of the final output)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="range_scale (Controls how far out of range RGB values are allowed to be)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="init_scale (This enhances the effect of the init image)"), gr.inputs.Number(default=0, label="Seed"), gr.inputs.Image(type="file", label='image prompt (optional)', optional=True), gr.inputs.Slider(minimum=50, maximum=500, step=1, default=50, label="timestep respacing"),gr.inputs.Slider(minimum=1, maximum=64, step=1, default=32, label="cutn")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists", "coralreef.jpeg", 0, 1000, 150, 50, 0, 0, "coralreef.jpeg", 90, 32]])
iface.launch()