Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,9 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
3 |
import re
|
4 |
import pandas as pd
|
5 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
from sklearn.naive_bayes import MultinomialNB
|
7 |
-
import numpy as np
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
-
from sklearn.ensemble import RandomForestClassifier
|
10 |
-
from sklearn.metrics import accuracy_score, classification_report
|
11 |
-
import tensorflow as tf
|
12 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
13 |
-
from sklearn.naive_bayes import MultinomialNB
|
14 |
-
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
15 |
-
import nltk
|
16 |
-
from nltk.corpus import stopwords
|
17 |
-
from nltk.stem import PorterStemmer
|
18 |
-
from gensim.models import Word2Vec
|
19 |
-
import matplotlib.pyplot as plt
|
20 |
-
import seaborn as sns
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# for using TensorFlow for deep learning
|
25 |
-
from tensorflow.keras.models import Sequential
|
26 |
-
from tensorflow.keras.layers import Dense
|
27 |
-
from tensorflow.keras.optimizers import Adam
|
28 |
-
from tensorflow.keras.losses import categorical_crossentropy
|
29 |
-
|
30 |
-
# for using PyTorch for deep learning
|
31 |
-
import torch
|
32 |
-
import torch.nn as nn
|
33 |
-
import torch.optim as optim
|
34 |
-
import torch.nn.functional as F
|
35 |
|
36 |
# Load your symptom-disease data
|
37 |
data = pd.read_csv("Symptom2Disease.csv")
|
@@ -52,11 +24,20 @@ model = MultinomialNB()
|
|
52 |
model.fit(X_train, y_train)
|
53 |
|
54 |
# Set Streamlit app title with emojis
|
55 |
-
st.title("
|
56 |
|
57 |
# Define a sidebar
|
58 |
st.sidebar.title("Tool Definition")
|
59 |
-
st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Initialize chat history
|
62 |
if "messages" not in st.session_state:
|
@@ -97,8 +78,18 @@ if st.button("Predict Disease"):
|
|
97 |
else:
|
98 |
st.warning("Please enter your symptoms before predicting.")
|
99 |
|
100 |
-
#
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Add attribution
|
104 |
-
st.markdown("Created β€οΈ by Richard Dorglo")
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import re
|
3 |
import pandas as pd
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.naive_bayes import MultinomialNB
|
|
|
6 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load your symptom-disease data
|
9 |
data = pd.read_csv("Symptom2Disease.csv")
|
|
|
24 |
model.fit(X_train, y_train)
|
25 |
|
26 |
# Set Streamlit app title with emojis
|
27 |
+
st.title("Health Symptom-to-Disease Predictor π₯π¨ββοΈ")
|
28 |
|
29 |
# Define a sidebar
|
30 |
st.sidebar.title("Tool Definition")
|
31 |
+
st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide.")
|
32 |
+
st.sidebar.markdown("the tool may aid healthcare professionals in the initial assessment of potential conditions, facilitating quicker decision-making and improving patient care")
|
33 |
+
|
34 |
+
st.sidebar.title("β οΈ **Limitation**")
|
35 |
+
st.sidebar.markdown("This tool's predictions are based solely on symptom descriptions and may not account for other critical factors,")
|
36 |
+
st.sidebar.markdown("such as a patient's medical history or laboratory tests,")
|
37 |
+
st.sidebar.markdown("As such,it should be used as an initial reference and not as a sole diagnostic tool. π©ββοΈ")
|
38 |
+
|
39 |
+
st.warning("Please note that this tool is for informational purposes only. Always consult a healthcare professional for accurate medical advice.")
|
40 |
+
show_faqs = st.sidebar.checkbox("Show FAQs")
|
41 |
|
42 |
# Initialize chat history
|
43 |
if "messages" not in st.session_state:
|
|
|
78 |
else:
|
79 |
st.warning("Please enter your symptoms before predicting.")
|
80 |
|
81 |
+
# Create FAQs section
|
82 |
+
if show_faqs:
|
83 |
+
st.markdown("## Frequently Asked Questions")
|
84 |
+
st.markdown("**Q: How does this tool work?**")
|
85 |
+
st.markdown("A: The tool uses a machine learning model to analyze the symptoms you enter and predicts possible diseases based on a pre-trained dataset.")
|
86 |
+
|
87 |
+
st.markdown("**Q: Is this a substitute for a doctor's advice?**")
|
88 |
+
st.markdown("A: No, this tool is for informational purposes only. It's essential to consult a healthcare professional for accurate medical advice.")
|
89 |
+
|
90 |
+
st.markdown("**Q: Can I trust the predictions?**")
|
91 |
+
st.markdown("A: While the tool provides predictions, it's not a guarantee of accuracy. It's always best to consult a healthcare expert for a reliable diagnosis.")
|
92 |
|
93 |
# Add attribution
|
94 |
+
st.markdown("Created β€οΈ by Richard Dorglo")
|
95 |
+
|