Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai # For OpenAI integration
|
2 |
+
import gradio as gr
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
# Set your Nemotron API key
|
6 |
+
nemotron_api_key = "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"
|
7 |
+
nemotron_api_url = "https://integrate.api.nvidia.com/v1" # Correct API base URL
|
8 |
+
|
9 |
+
# Initialize the client for Nemotron API
|
10 |
+
client = OpenAI(
|
11 |
+
base_url=nemotron_api_url,
|
12 |
+
api_key=nemotron_api_key
|
13 |
+
)
|
14 |
+
|
15 |
+
# Function to generate descriptions using Nemotron API
|
16 |
+
def generate_nemotron_description(product_name, features, audience):
|
17 |
+
# Create the prompt based on the input
|
18 |
+
input_text = (
|
19 |
+
f"Write a highly detailed, professional, and attractive product description for a traditional craft item called '{product_name}'. "
|
20 |
+
f"This product has the following features: {features}. "
|
21 |
+
f"It is designed for {audience}. Highlight its cultural significance, craftsmanship, uniqueness, and appeal. "
|
22 |
+
f"Use emotional and sensory-rich language to make it compelling. The description must be at least 300 words long and suitable for e-commerce or marketing."
|
23 |
+
)
|
24 |
+
|
25 |
+
try:
|
26 |
+
# API call to the Nemotron API using the chat completion endpoint
|
27 |
+
completion = client.chat.completions.create(
|
28 |
+
model="nvidia/nemotron-4-340b-instruct", # Adjust to your model name
|
29 |
+
messages=[{"role": "user", "content": input_text}],
|
30 |
+
temperature=0.7,
|
31 |
+
top_p=0.9,
|
32 |
+
max_tokens=250,
|
33 |
+
stream=False # Set to False to get the whole response at once
|
34 |
+
)
|
35 |
+
|
36 |
+
# Extract the generated description
|
37 |
+
# Correctly access the message content
|
38 |
+
generated_text = completion.choices[0].message.content
|
39 |
+
return generated_text.strip()
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
return f"An error occurred: {str(e)}"
|
43 |
+
|
44 |
+
# Gradio interface for ease of use
|
45 |
+
interface = gr.Interface(
|
46 |
+
fn=generate_nemotron_description,
|
47 |
+
inputs=[
|
48 |
+
gr.Textbox(label="Product Name", placeholder="e.g., Handwoven Silk Saree"),
|
49 |
+
gr.Textbox(label="Features", placeholder="e.g., eco-friendly, handmade, intricate patterns"),
|
50 |
+
gr.Textbox(label="Target Audience", placeholder="e.g., luxury buyers, art enthusiasts"),
|
51 |
+
],
|
52 |
+
outputs=gr.Textbox(label="Detailed Product Description"),
|
53 |
+
title="AI Product Description Generator (Nemotron)",
|
54 |
+
description=(
|
55 |
+
"Generate long, engaging, and highly detailed product descriptions using Nemotron's API. "
|
56 |
+
"Perfect for traditional craft items, e-commerce listings, and marketing purposes."
|
57 |
+
),
|
58 |
+
flagging_mode="never"
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch Gradio app
|
62 |
+
interface.launch(share=True)
|