import cv2 import copy import torch import numpy as np from maskrcnn_benchmark.layers.misc import interpolate import pycocotools.mask as mask_utils # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 """ ABSTRACT Segmentations come in either: 1) Binary masks 2) Polygons Binary masks can be represented in a contiguous array and operations can be carried out more efficiently, therefore BinaryMaskList handles them together. Polygons are handled separately for each instance, by PolygonInstance and instances are handled by PolygonList. SegmentationList is supposed to represent both, therefore it wraps the functions of BinaryMaskList and PolygonList to make it transparent. """ class BinaryMaskList(object): """ This class handles binary masks for all objects in the image """ def __init__(self, masks, size): """ Arguments: masks: Either torch.tensor of [num_instances, H, W] or list of torch.tensors of [H, W] with num_instances elems, or RLE (Run Length Encoding) - interpreted as list of dicts, or BinaryMaskList. size: absolute image size, width first After initialization, a hard copy will be made, to leave the initializing source data intact. """ if isinstance(masks, torch.Tensor): # The raw data representation is passed as argument masks = masks.clone() elif isinstance(masks, (list, tuple)): if isinstance(masks[0], torch.Tensor): masks = torch.stack(masks, dim=2).clone() elif isinstance(masks[0], dict) and "count" in masks[0]: # RLE interpretation masks = mask_utils else: RuntimeError( "Type of `masks[0]` could not be interpreted: %s" % type(masks) ) elif isinstance(masks, BinaryMaskList): # just hard copy the BinaryMaskList instance's underlying data masks = masks.masks.clone() else: RuntimeError( "Type of `masks` argument could not be interpreted:%s" % type(masks) ) if len(masks.shape) == 2: # if only a single instance mask is passed masks = masks[None] assert len(masks.shape) == 3 assert masks.shape[1] == size[1], "%s != %s" % (masks.shape[1], size[1]) assert masks.shape[2] == size[0], "%s != %s" % (masks.shape[2], size[0]) self.masks = masks self.size = tuple(size) def transpose(self, method): dim = 1 if method == FLIP_TOP_BOTTOM else 2 flipped_masks = self.masks.flip(dim) return BinaryMaskList(flipped_masks, self.size) def crop(self, box): assert isinstance(box, (list, tuple, torch.Tensor)), str(type(box)) # box is assumed to be xyxy current_width, current_height = self.size xmin, ymin, xmax, ymax = [round(float(b)) for b in box] assert xmin <= xmax and ymin <= ymax, str(box) xmin = min(max(xmin, 0), current_width - 1) ymin = min(max(ymin, 0), current_height - 1) xmax = min(max(xmax, 0), current_width) ymax = min(max(ymax, 0), current_height) xmax = max(xmax, xmin + 1) ymax = max(ymax, ymin + 1) width, height = xmax - xmin, ymax - ymin cropped_masks = self.masks[:, ymin:ymax, xmin:xmax] cropped_size = width, height return BinaryMaskList(cropped_masks, cropped_size) def resize(self, size): try: iter(size) except TypeError: assert isinstance(size, (int, float)) size = size, size width, height = map(int, size) assert width > 0 assert height > 0 # Height comes first here! resized_masks = torch.nn.functional.interpolate( input=self.masks[None].float(), size=(height, width), mode="bilinear", align_corners=False, )[0].type_as(self.masks) resized_size = width, height return BinaryMaskList(resized_masks, resized_size) def convert_to_polygon(self): contours = self._findContours() return PolygonList(contours, self.size) def to(self, *args, **kwargs): return self def _findContours(self): contours = [] masks = self.masks.detach().numpy() for mask in masks: mask = cv2.UMat(mask) contour, hierarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1 ) reshaped_contour = [] for entity in contour: assert len(entity.shape) == 3 assert entity.shape[1] == 1, "Hierarchical contours are not allowed" reshaped_contour.append(entity.reshape(-1).tolist()) contours.append(reshaped_contour) return contours def __len__(self): return len(self.masks) def __getitem__(self, index): # Probably it can cause some overhead # but preserves consistency masks = self.masks[index].clone() return BinaryMaskList(masks, self.size) def __iter__(self): return iter(self.masks) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.masks)) s += "image_width={}, ".format(self.size[0]) s += "image_height={})".format(self.size[1]) return s class PolygonInstance(object): """ This class holds a set of polygons that represents a single instance of an object mask. The object can be represented as a set of polygons """ def __init__(self, polygons, size): """ Arguments: a list of lists of numbers. The first level refers to all the polygons that compose the object, and the second level to the polygon coordinates. """ if isinstance(polygons, (list, tuple)): valid_polygons = [] for p in polygons: p = torch.as_tensor(p, dtype=torch.float32) if len(p) >= 6: # 3 * 2 coordinates valid_polygons.append(p) polygons = valid_polygons elif isinstance(polygons, PolygonInstance): polygons = copy.copy(polygons.polygons) else: RuntimeError( "Type of argument `polygons` is not allowed:%s" % (type(polygons)) ) """ This crashes the training way too many times... for p in polygons: assert p[::2].min() >= 0 assert p[::2].max() < size[0] assert p[1::2].min() >= 0 assert p[1::2].max() , size[1] """ self.polygons = polygons self.size = tuple(size) def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped_polygons = [] width, height = self.size if method == FLIP_LEFT_RIGHT: dim = width idx = 0 elif method == FLIP_TOP_BOTTOM: dim = height idx = 1 for poly in self.polygons: p = poly.clone() TO_REMOVE = 1 p[idx::2] = dim - poly[idx::2] - TO_REMOVE flipped_polygons.append(p) return PolygonInstance(flipped_polygons, size=self.size) def crop(self, box): assert isinstance(box, (list, tuple, torch.Tensor)), str(type(box)) # box is assumed to be xyxy current_width, current_height = self.size xmin, ymin, xmax, ymax = map(float, box) assert xmin <= xmax and ymin <= ymax, str(box) xmin = min(max(xmin, 0), current_width - 1) ymin = min(max(ymin, 0), current_height - 1) xmax = min(max(xmax, 0), current_width) ymax = min(max(ymax, 0), current_height) xmax = max(xmax, xmin + 1) ymax = max(ymax, ymin + 1) w, h = xmax - xmin, ymax - ymin cropped_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] = p[0::2] - xmin # .clamp(min=0, max=w) p[1::2] = p[1::2] - ymin # .clamp(min=0, max=h) cropped_polygons.append(p) return PolygonInstance(cropped_polygons, size=(w, h)) def resize(self, size): try: iter(size) except TypeError: assert isinstance(size, (int, float)) size = size, size ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_polys = [p * ratio for p in self.polygons] return PolygonInstance(scaled_polys, size) ratio_w, ratio_h = ratios scaled_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] *= ratio_w p[1::2] *= ratio_h scaled_polygons.append(p) return PolygonInstance(scaled_polygons, size=size) def convert_to_binarymask(self): width, height = self.size # formatting for COCO PythonAPI polygons = [p.numpy() for p in self.polygons] rles = mask_utils.frPyObjects(polygons, height, width) rle = mask_utils.merge(rles) mask = mask_utils.decode(rle) mask = torch.from_numpy(mask) return mask def __len__(self): return len(self.polygons) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_groups={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) return s class PolygonList(object): """ This class handles PolygonInstances for all objects in the image """ def __init__(self, polygons, size): """ Arguments: polygons: a list of list of lists of numbers. The first level of the list correspond to individual instances, the second level to all the polygons that compose the object, and the third level to the polygon coordinates. OR a list of PolygonInstances. OR a PolygonList size: absolute image size """ if isinstance(polygons, (list, tuple)): if len(polygons) == 0: polygons = [[[]]] if isinstance(polygons[0], (list, tuple)): assert isinstance(polygons[0][0], (list, tuple)), str( type(polygons[0][0]) ) else: assert isinstance(polygons[0], PolygonInstance), str(type(polygons[0])) elif isinstance(polygons, PolygonList): size = polygons.size polygons = polygons.polygons else: RuntimeError( "Type of argument `polygons` is not allowed:%s" % (type(polygons)) ) assert isinstance(size, (list, tuple)), str(type(size)) self.polygons = [] for p in polygons: p = PolygonInstance(p, size) if len(p) > 0: self.polygons.append(p) self.size = tuple(size) def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped_polygons = [] for polygon in self.polygons: flipped_polygons.append(polygon.transpose(method)) return PolygonList(flipped_polygons, size=self.size) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] cropped_polygons = [] for polygon in self.polygons: cropped_polygons.append(polygon.crop(box)) cropped_size = w, h return PolygonList(cropped_polygons, cropped_size) def resize(self, size): resized_polygons = [] for polygon in self.polygons: resized_polygons.append(polygon.resize(size)) resized_size = size return PolygonList(resized_polygons, resized_size) def to(self, *args, **kwargs): return self def convert_to_binarymask(self): if len(self) > 0: masks = torch.stack([p.convert_to_binarymask() for p in self.polygons]) else: size = self.size masks = torch.empty([0, size[1], size[0]], dtype=torch.uint8) return BinaryMaskList(masks, size=self.size) def __len__(self): return len(self.polygons) def __getitem__(self, item): if isinstance(item, int): selected_polygons = [self.polygons[item]] elif isinstance(item, slice): selected_polygons = self.polygons[item] else: # advanced indexing on a single dimension selected_polygons = [] if isinstance(item, torch.Tensor) and item.dtype == torch.uint8: item = item.nonzero() item = item.squeeze(1) if item.numel() > 0 else item item = item.tolist() for i in item: selected_polygons.append(self.polygons[i]) return PolygonList(selected_polygons, size=self.size) def __iter__(self): return iter(self.polygons) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={})".format(self.size[1]) return s class SegmentationMask(object): """ This class stores the segmentations for all objects in the image. It wraps BinaryMaskList and PolygonList conveniently. """ def __init__(self, instances, size, mode="poly"): """ Arguments: instances: two types (1) polygon (2) binary mask size: (width, height) mode: 'poly', 'mask'. if mode is 'mask', convert mask of any format to binary mask """ assert isinstance(size, (list, tuple)) assert len(size) == 2 if isinstance(size[0], torch.Tensor): assert isinstance(size[1], torch.Tensor) size = size[0].item(), size[1].item() assert isinstance(size[0], (int, float)) assert isinstance(size[1], (int, float)) if mode == "poly": self.instances = PolygonList(instances, size) elif mode == "mask": self.instances = BinaryMaskList(instances, size) else: raise NotImplementedError("Unknown mode: %s" % str(mode)) self.mode = mode self.size = tuple(size) def transpose(self, method): flipped_instances = self.instances.transpose(method) return SegmentationMask(flipped_instances, self.size, self.mode) def crop(self, box): cropped_instances = self.instances.crop(box) cropped_size = cropped_instances.size return SegmentationMask(cropped_instances, cropped_size, self.mode) def resize(self, size, *args, **kwargs): resized_instances = self.instances.resize(size) resized_size = size return SegmentationMask(resized_instances, resized_size, self.mode) def to(self, *args, **kwargs): return self def convert(self, mode): if mode == self.mode: return self if mode == "poly": converted_instances = self.instances.convert_to_polygon() elif mode == "mask": converted_instances = self.instances.convert_to_binarymask() else: raise NotImplementedError("Unknown mode: %s" % str(mode)) return SegmentationMask(converted_instances, self.size, mode) def get_mask_tensor(self): instances = self.instances if self.mode == "poly": instances = instances.convert_to_binarymask() # If there is only 1 instance return instances.masks.squeeze(0) def __len__(self): return len(self.instances) def __getitem__(self, item): selected_instances = self.instances.__getitem__(item) return SegmentationMask(selected_instances, self.size, self.mode) def __iter__(self): self.iter_idx = 0 return self def __next__(self): if self.iter_idx < self.__len__(): next_segmentation = self.__getitem__(self.iter_idx) self.iter_idx += 1 return next_segmentation raise StopIteration() next = __next__ # Python 2 compatibility def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.instances)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s