import torch from torch import nn class IOULoss(nn.Module): def forward(self, pred, target, weight=None): pred_left = pred[:, 0] pred_top = pred[:, 1] pred_right = pred[:, 2] pred_bottom = pred[:, 3] target_left = target[:, 0] target_top = target[:, 1] target_right = target[:, 2] target_bottom = target[:, 3] target_aera = (target_left + target_right) * \ (target_top + target_bottom) pred_aera = (pred_left + pred_right) * \ (pred_top + pred_bottom) w_intersect = torch.min(pred_left, target_left) + \ torch.min(pred_right, target_right) h_intersect = torch.min(pred_bottom, target_bottom) + \ torch.min(pred_top, target_top) area_intersect = w_intersect * h_intersect area_union = target_aera + pred_aera - area_intersect losses = -torch.log((area_intersect + 1.0) / (area_union + 1.0)) if weight is not None and weight.sum() > 0: return (losses * weight).sum() / weight.sum() else: assert losses.numel() != 0 return losses.mean()