Spaces:
Build error
Build error
First model version
Browse files- app.py +0 -3
- data/charset_36.txt +36 -0
- data/charset_62.txt +62 -0
- demo.py +109 -0
- demo/1.jpg +0 -0
- demo/2.jpg +0 -0
- demo/example1.jpg +0 -0
- demo/example_results.jpg +0 -0
- figs/cases.png +0 -0
- figs/framework.png +0 -0
- figs/test/CANDY.png +0 -0
- figs/test/ESPLANADE.png +0 -0
- figs/test/GLOBE.png +0 -0
- figs/test/KAPPA.png +0 -0
- figs/test/MANDARIN.png +0 -0
- figs/test/MEETS.png +0 -0
- figs/test/MONTHLY.png +0 -0
- figs/test/RESTROOM.png +0 -0
- modules/__init__.py +0 -0
- modules/attention.py +97 -0
- modules/backbone.py +36 -0
- modules/model.py +50 -0
- modules/model_abinet.py +30 -0
- modules/model_abinet_iter.py +34 -0
- modules/model_alignment.py +34 -0
- modules/model_language.py +67 -0
- modules/model_vision.py +47 -0
- modules/resnet.py +104 -0
- modules/transformer.py +901 -0
- requirements.txt +9 -3
- utils.py +304 -0
app.py
CHANGED
@@ -25,9 +25,6 @@ def infer(filepath):
|
|
25 |
)
|
26 |
image = cv2.imread(filepath)
|
27 |
result_polygons, result_masks, result_boxes = det_demo.run_on_opencv_image(image)
|
28 |
-
patchs = [image[box[1]:box[3], box[0]:box[2], :] for box in result_boxes]
|
29 |
-
patchs = [cv2.resize(patch, (128,32)) for patch in patchs]
|
30 |
-
patchs = np.stack(patchs, axis=0).transpose(0,3,1,2)
|
31 |
visual_image = det_demo.visualization(image.copy(), result_polygons, result_masks, result_boxes)
|
32 |
cv2.imwrite('result.jpg', visual_image)
|
33 |
return 'result.jpg'#, pd.DataFrame(result_words)
|
|
|
25 |
)
|
26 |
image = cv2.imread(filepath)
|
27 |
result_polygons, result_masks, result_boxes = det_demo.run_on_opencv_image(image)
|
|
|
|
|
|
|
28 |
visual_image = det_demo.visualization(image.copy(), result_polygons, result_masks, result_boxes)
|
29 |
cv2.imwrite('result.jpg', visual_image)
|
30 |
return 'result.jpg'#, pd.DataFrame(result_words)
|
data/charset_36.txt
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 a
|
2 |
+
1 b
|
3 |
+
2 c
|
4 |
+
3 d
|
5 |
+
4 e
|
6 |
+
5 f
|
7 |
+
6 g
|
8 |
+
7 h
|
9 |
+
8 i
|
10 |
+
9 j
|
11 |
+
10 k
|
12 |
+
11 l
|
13 |
+
12 m
|
14 |
+
13 n
|
15 |
+
14 o
|
16 |
+
15 p
|
17 |
+
16 q
|
18 |
+
17 r
|
19 |
+
18 s
|
20 |
+
19 t
|
21 |
+
20 u
|
22 |
+
21 v
|
23 |
+
22 w
|
24 |
+
23 x
|
25 |
+
24 y
|
26 |
+
25 z
|
27 |
+
26 1
|
28 |
+
27 2
|
29 |
+
28 3
|
30 |
+
29 4
|
31 |
+
30 5
|
32 |
+
31 6
|
33 |
+
32 7
|
34 |
+
33 8
|
35 |
+
34 9
|
36 |
+
35 0
|
data/charset_62.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 0
|
2 |
+
1 1
|
3 |
+
2 2
|
4 |
+
3 3
|
5 |
+
4 4
|
6 |
+
5 5
|
7 |
+
6 6
|
8 |
+
7 7
|
9 |
+
8 8
|
10 |
+
9 9
|
11 |
+
10 A
|
12 |
+
11 B
|
13 |
+
12 C
|
14 |
+
13 D
|
15 |
+
14 E
|
16 |
+
15 F
|
17 |
+
16 G
|
18 |
+
17 H
|
19 |
+
18 I
|
20 |
+
19 J
|
21 |
+
20 K
|
22 |
+
21 L
|
23 |
+
22 M
|
24 |
+
23 N
|
25 |
+
24 O
|
26 |
+
25 P
|
27 |
+
26 Q
|
28 |
+
27 R
|
29 |
+
28 S
|
30 |
+
29 T
|
31 |
+
30 U
|
32 |
+
31 V
|
33 |
+
32 W
|
34 |
+
33 X
|
35 |
+
34 Y
|
36 |
+
35 Z
|
37 |
+
36 a
|
38 |
+
37 b
|
39 |
+
38 c
|
40 |
+
39 d
|
41 |
+
40 e
|
42 |
+
41 f
|
43 |
+
42 g
|
44 |
+
43 h
|
45 |
+
44 i
|
46 |
+
45 j
|
47 |
+
46 k
|
48 |
+
47 l
|
49 |
+
48 m
|
50 |
+
49 n
|
51 |
+
50 o
|
52 |
+
51 p
|
53 |
+
52 q
|
54 |
+
53 r
|
55 |
+
54 s
|
56 |
+
55 t
|
57 |
+
56 u
|
58 |
+
57 v
|
59 |
+
58 w
|
60 |
+
59 x
|
61 |
+
60 y
|
62 |
+
61 z
|
demo.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import glob
|
5 |
+
import tqdm
|
6 |
+
import torch
|
7 |
+
import PIL
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torchvision import transforms
|
12 |
+
from utils import Config, Logger, CharsetMapper
|
13 |
+
|
14 |
+
def get_model(config):
|
15 |
+
import importlib
|
16 |
+
names = config.model_name.split('.')
|
17 |
+
module_name, class_name = '.'.join(names[:-1]), names[-1]
|
18 |
+
cls = getattr(importlib.import_module(module_name), class_name)
|
19 |
+
model = cls(config)
|
20 |
+
logging.info(model)
|
21 |
+
model = model.eval()
|
22 |
+
return model
|
23 |
+
|
24 |
+
def preprocess(img, width, height):
|
25 |
+
img = cv2.resize(np.array(img), (width, height))
|
26 |
+
img = transforms.ToTensor()(img).unsqueeze(0)
|
27 |
+
mean = torch.tensor([0.485, 0.456, 0.406])
|
28 |
+
std = torch.tensor([0.229, 0.224, 0.225])
|
29 |
+
return (img-mean[...,None,None]) / std[...,None,None]
|
30 |
+
|
31 |
+
def postprocess(output, charset, model_eval):
|
32 |
+
def _get_output(last_output, model_eval):
|
33 |
+
if isinstance(last_output, (tuple, list)):
|
34 |
+
for res in last_output:
|
35 |
+
if res['name'] == model_eval: output = res
|
36 |
+
else: output = last_output
|
37 |
+
return output
|
38 |
+
|
39 |
+
def _decode(logit):
|
40 |
+
""" Greed decode """
|
41 |
+
out = F.softmax(logit, dim=2)
|
42 |
+
pt_text, pt_scores, pt_lengths = [], [], []
|
43 |
+
for o in out:
|
44 |
+
text = charset.get_text(o.argmax(dim=1), padding=False, trim=False)
|
45 |
+
text = text.split(charset.null_char)[0] # end at end-token
|
46 |
+
pt_text.append(text)
|
47 |
+
pt_scores.append(o.max(dim=1)[0])
|
48 |
+
pt_lengths.append(min(len(text) + 1, charset.max_length)) # one for end-token
|
49 |
+
return pt_text, pt_scores, pt_lengths
|
50 |
+
|
51 |
+
output = _get_output(output, model_eval)
|
52 |
+
logits, pt_lengths = output['logits'], output['pt_lengths']
|
53 |
+
pt_text, pt_scores, pt_lengths_ = _decode(logits)
|
54 |
+
|
55 |
+
return pt_text, pt_scores, pt_lengths_
|
56 |
+
|
57 |
+
def load(model, file, device=None, strict=True):
|
58 |
+
if device is None: device = 'cpu'
|
59 |
+
elif isinstance(device, int): device = torch.device('cuda', device)
|
60 |
+
assert os.path.isfile(file)
|
61 |
+
state = torch.load(file, map_location=device)
|
62 |
+
if set(state.keys()) == {'model', 'opt'}:
|
63 |
+
state = state['model']
|
64 |
+
model.load_state_dict(state, strict=strict)
|
65 |
+
return model
|
66 |
+
|
67 |
+
def main():
|
68 |
+
parser = argparse.ArgumentParser()
|
69 |
+
parser.add_argument('--config', type=str, default='configs/train_abinet.yaml',
|
70 |
+
help='path to config file')
|
71 |
+
parser.add_argument('--input', type=str, default='figs/test')
|
72 |
+
parser.add_argument('--cuda', type=int, default=-1)
|
73 |
+
parser.add_argument('--checkpoint', type=str, default='workdir/train-abinet/best-train-abinet.pth')
|
74 |
+
parser.add_argument('--model_eval', type=str, default='alignment',
|
75 |
+
choices=['alignment', 'vision', 'language'])
|
76 |
+
args = parser.parse_args()
|
77 |
+
config = Config(args.config)
|
78 |
+
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
|
79 |
+
if args.model_eval is not None: config.model_eval = args.model_eval
|
80 |
+
config.global_phase = 'test'
|
81 |
+
config.model_vision_checkpoint, config.model_language_checkpoint = None, None
|
82 |
+
device = 'cpu' if args.cuda < 0 else f'cuda:{args.cuda}'
|
83 |
+
|
84 |
+
Logger.init(config.global_workdir, config.global_name, config.global_phase)
|
85 |
+
Logger.enable_file()
|
86 |
+
logging.info(config)
|
87 |
+
|
88 |
+
logging.info('Construct model.')
|
89 |
+
model = get_model(config).to(device)
|
90 |
+
model = load(model, config.model_checkpoint, device=device)
|
91 |
+
charset = CharsetMapper(filename=config.dataset_charset_path,
|
92 |
+
max_length=config.dataset_max_length + 1)
|
93 |
+
|
94 |
+
if os.path.isdir(args.input):
|
95 |
+
paths = [os.path.join(args.input, fname) for fname in os.listdir(args.input)]
|
96 |
+
else:
|
97 |
+
paths = glob.glob(os.path.expanduser(args.input))
|
98 |
+
assert paths, "The input path(s) was not found"
|
99 |
+
paths = sorted(paths)
|
100 |
+
for path in tqdm.tqdm(paths):
|
101 |
+
img = PIL.Image.open(path).convert('RGB')
|
102 |
+
img = preprocess(img, config.dataset_image_width, config.dataset_image_height)
|
103 |
+
img = img.to(device)
|
104 |
+
res = model(img)
|
105 |
+
pt_text, _, __ = postprocess(res, charset, config.model_eval)
|
106 |
+
logging.info(f'{path}: {pt_text[0]}')
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
main()
|
demo/1.jpg
DELETED
Binary file (26.9 kB)
|
|
demo/2.jpg
DELETED
Binary file (19.1 kB)
|
|
demo/example1.jpg
DELETED
Binary file (31.9 kB)
|
|
demo/example_results.jpg
DELETED
Binary file (49.1 kB)
|
|
figs/cases.png
ADDED
figs/framework.png
ADDED
figs/test/CANDY.png
ADDED
figs/test/ESPLANADE.png
ADDED
figs/test/GLOBE.png
ADDED
figs/test/KAPPA.png
ADDED
figs/test/MANDARIN.png
ADDED
figs/test/MEETS.png
ADDED
figs/test/MONTHLY.png
ADDED
figs/test/RESTROOM.png
ADDED
modules/__init__.py
ADDED
File without changes
|
modules/attention.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .transformer import PositionalEncoding
|
4 |
+
|
5 |
+
class Attention(nn.Module):
|
6 |
+
def __init__(self, in_channels=512, max_length=25, n_feature=256):
|
7 |
+
super().__init__()
|
8 |
+
self.max_length = max_length
|
9 |
+
|
10 |
+
self.f0_embedding = nn.Embedding(max_length, in_channels)
|
11 |
+
self.w0 = nn.Linear(max_length, n_feature)
|
12 |
+
self.wv = nn.Linear(in_channels, in_channels)
|
13 |
+
self.we = nn.Linear(in_channels, max_length)
|
14 |
+
|
15 |
+
self.active = nn.Tanh()
|
16 |
+
self.softmax = nn.Softmax(dim=2)
|
17 |
+
|
18 |
+
def forward(self, enc_output):
|
19 |
+
enc_output = enc_output.permute(0, 2, 3, 1).flatten(1, 2)
|
20 |
+
reading_order = torch.arange(self.max_length, dtype=torch.long, device=enc_output.device)
|
21 |
+
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) # (S,) -> (B, S)
|
22 |
+
reading_order_embed = self.f0_embedding(reading_order) # b,25,512
|
23 |
+
|
24 |
+
t = self.w0(reading_order_embed.permute(0, 2, 1)) # b,512,256
|
25 |
+
t = self.active(t.permute(0, 2, 1) + self.wv(enc_output)) # b,256,512
|
26 |
+
|
27 |
+
attn = self.we(t) # b,256,25
|
28 |
+
attn = self.softmax(attn.permute(0, 2, 1)) # b,25,256
|
29 |
+
g_output = torch.bmm(attn, enc_output) # b,25,512
|
30 |
+
return g_output, attn.view(*attn.shape[:2], 8, 32)
|
31 |
+
|
32 |
+
|
33 |
+
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
|
34 |
+
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
|
35 |
+
nn.BatchNorm2d(out_c),
|
36 |
+
nn.ReLU(True))
|
37 |
+
|
38 |
+
def decoder_layer(in_c, out_c, k=3, s=1, p=1, mode='nearest', scale_factor=None, size=None):
|
39 |
+
align_corners = None if mode=='nearest' else True
|
40 |
+
return nn.Sequential(nn.Upsample(size=size, scale_factor=scale_factor,
|
41 |
+
mode=mode, align_corners=align_corners),
|
42 |
+
nn.Conv2d(in_c, out_c, k, s, p),
|
43 |
+
nn.BatchNorm2d(out_c),
|
44 |
+
nn.ReLU(True))
|
45 |
+
|
46 |
+
|
47 |
+
class PositionAttention(nn.Module):
|
48 |
+
def __init__(self, max_length, in_channels=512, num_channels=64,
|
49 |
+
h=8, w=32, mode='nearest', **kwargs):
|
50 |
+
super().__init__()
|
51 |
+
self.max_length = max_length
|
52 |
+
self.k_encoder = nn.Sequential(
|
53 |
+
encoder_layer(in_channels, num_channels, s=(1, 2)),
|
54 |
+
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
55 |
+
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
56 |
+
encoder_layer(num_channels, num_channels, s=(2, 2))
|
57 |
+
)
|
58 |
+
self.k_decoder = nn.Sequential(
|
59 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
60 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
61 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
62 |
+
decoder_layer(num_channels, in_channels, size=(h, w), mode=mode)
|
63 |
+
)
|
64 |
+
|
65 |
+
self.pos_encoder = PositionalEncoding(in_channels, dropout=0, max_len=max_length)
|
66 |
+
self.project = nn.Linear(in_channels, in_channels)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
N, E, H, W = x.size()
|
70 |
+
k, v = x, x # (N, E, H, W)
|
71 |
+
|
72 |
+
# calculate key vector
|
73 |
+
features = []
|
74 |
+
for i in range(0, len(self.k_encoder)):
|
75 |
+
k = self.k_encoder[i](k)
|
76 |
+
features.append(k)
|
77 |
+
for i in range(0, len(self.k_decoder) - 1):
|
78 |
+
k = self.k_decoder[i](k)
|
79 |
+
k = k + features[len(self.k_decoder) - 2 - i]
|
80 |
+
k = self.k_decoder[-1](k)
|
81 |
+
|
82 |
+
# calculate query vector
|
83 |
+
# TODO q=f(q,k)
|
84 |
+
zeros = x.new_zeros((self.max_length, N, E)) # (T, N, E)
|
85 |
+
q = self.pos_encoder(zeros) # (T, N, E)
|
86 |
+
q = q.permute(1, 0, 2) # (N, T, E)
|
87 |
+
q = self.project(q) # (N, T, E)
|
88 |
+
|
89 |
+
# calculate attention
|
90 |
+
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
|
91 |
+
attn_scores = attn_scores / (E ** 0.5)
|
92 |
+
attn_scores = torch.softmax(attn_scores, dim=-1)
|
93 |
+
|
94 |
+
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
|
95 |
+
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
|
96 |
+
|
97 |
+
return attn_vecs, attn_scores.view(N, -1, H, W)
|
modules/backbone.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import _default_tfmer_cfg
|
6 |
+
from modules.resnet import resnet45
|
7 |
+
from modules.transformer import (PositionalEncoding,
|
8 |
+
TransformerEncoder,
|
9 |
+
TransformerEncoderLayer)
|
10 |
+
|
11 |
+
|
12 |
+
class ResTranformer(nn.Module):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__()
|
15 |
+
self.resnet = resnet45()
|
16 |
+
|
17 |
+
self.d_model = ifnone(config.model_vision_d_model, _default_tfmer_cfg['d_model'])
|
18 |
+
nhead = ifnone(config.model_vision_nhead, _default_tfmer_cfg['nhead'])
|
19 |
+
d_inner = ifnone(config.model_vision_d_inner, _default_tfmer_cfg['d_inner'])
|
20 |
+
dropout = ifnone(config.model_vision_dropout, _default_tfmer_cfg['dropout'])
|
21 |
+
activation = ifnone(config.model_vision_activation, _default_tfmer_cfg['activation'])
|
22 |
+
num_layers = ifnone(config.model_vision_backbone_ln, 2)
|
23 |
+
|
24 |
+
self.pos_encoder = PositionalEncoding(self.d_model, max_len=8*32)
|
25 |
+
encoder_layer = TransformerEncoderLayer(d_model=self.d_model, nhead=nhead,
|
26 |
+
dim_feedforward=d_inner, dropout=dropout, activation=activation)
|
27 |
+
self.transformer = TransformerEncoder(encoder_layer, num_layers)
|
28 |
+
|
29 |
+
def forward(self, images):
|
30 |
+
feature = self.resnet(images)
|
31 |
+
n, c, h, w = feature.shape
|
32 |
+
feature = feature.view(n, c, -1).permute(2, 0, 1)
|
33 |
+
feature = self.pos_encoder(feature)
|
34 |
+
feature = self.transformer(feature)
|
35 |
+
feature = feature.permute(1, 2, 0).view(n, c, h, w)
|
36 |
+
return feature
|
modules/model.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from utils import CharsetMapper
|
5 |
+
|
6 |
+
|
7 |
+
_default_tfmer_cfg = dict(d_model=512, nhead=8, d_inner=2048, # 1024
|
8 |
+
dropout=0.1, activation='relu')
|
9 |
+
|
10 |
+
class Model(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__()
|
14 |
+
self.max_length = config.dataset_max_length + 1
|
15 |
+
self.charset = CharsetMapper(config.dataset_charset_path, max_length=self.max_length)
|
16 |
+
|
17 |
+
def load(self, source, device=None, strict=True):
|
18 |
+
state = torch.load(source, map_location=device)
|
19 |
+
self.load_state_dict(state['model'], strict=strict)
|
20 |
+
|
21 |
+
def _get_length(self, logit, dim=-1):
|
22 |
+
""" Greed decoder to obtain length from logit"""
|
23 |
+
out = (logit.argmax(dim=-1) == self.charset.null_label)
|
24 |
+
abn = out.any(dim)
|
25 |
+
out = ((out.cumsum(dim) == 1) & out).max(dim)[1]
|
26 |
+
out = out + 1 # additional end token
|
27 |
+
out = torch.where(abn, out, out.new_tensor(logit.shape[1]))
|
28 |
+
return out
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def _get_padding_mask(length, max_length):
|
32 |
+
length = length.unsqueeze(-1)
|
33 |
+
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
|
34 |
+
return grid >= length
|
35 |
+
|
36 |
+
@staticmethod
|
37 |
+
def _get_square_subsequent_mask(sz, device, diagonal=0, fw=True):
|
38 |
+
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
39 |
+
Unmasked positions are filled with float(0.0).
|
40 |
+
"""
|
41 |
+
mask = (torch.triu(torch.ones(sz, sz, device=device), diagonal=diagonal) == 1)
|
42 |
+
if fw: mask = mask.transpose(0, 1)
|
43 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
44 |
+
return mask
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def _get_location_mask(sz, device=None):
|
48 |
+
mask = torch.eye(sz, device=device)
|
49 |
+
mask = mask.float().masked_fill(mask == 1, float('-inf'))
|
50 |
+
return mask
|
modules/model_abinet.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from .model_vision import BaseVision
|
6 |
+
from .model_language import BCNLanguage
|
7 |
+
from .model_alignment import BaseAlignment
|
8 |
+
|
9 |
+
|
10 |
+
class ABINetModel(nn.Module):
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__()
|
13 |
+
self.use_alignment = ifnone(config.model_use_alignment, True)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.vision = BaseVision(config)
|
16 |
+
self.language = BCNLanguage(config)
|
17 |
+
if self.use_alignment: self.alignment = BaseAlignment(config)
|
18 |
+
|
19 |
+
def forward(self, images, *args):
|
20 |
+
v_res = self.vision(images)
|
21 |
+
v_tokens = torch.softmax(v_res['logits'], dim=-1)
|
22 |
+
v_lengths = v_res['pt_lengths'].clamp_(2, self.max_length) # TODO:move to langauge model
|
23 |
+
|
24 |
+
l_res = self.language(v_tokens, v_lengths)
|
25 |
+
if not self.use_alignment:
|
26 |
+
return l_res, v_res
|
27 |
+
l_feature, v_feature = l_res['feature'], v_res['feature']
|
28 |
+
|
29 |
+
a_res = self.alignment(l_feature, v_feature)
|
30 |
+
return a_res, l_res, v_res
|
modules/model_abinet_iter.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from .model_vision import BaseVision
|
6 |
+
from .model_language import BCNLanguage
|
7 |
+
from .model_alignment import BaseAlignment
|
8 |
+
|
9 |
+
|
10 |
+
class ABINetIterModel(nn.Module):
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__()
|
13 |
+
self.iter_size = ifnone(config.model_iter_size, 1)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.vision = BaseVision(config)
|
16 |
+
self.language = BCNLanguage(config)
|
17 |
+
self.alignment = BaseAlignment(config)
|
18 |
+
|
19 |
+
def forward(self, images, *args):
|
20 |
+
v_res = self.vision(images)
|
21 |
+
a_res = v_res
|
22 |
+
all_l_res, all_a_res = [], []
|
23 |
+
for _ in range(self.iter_size):
|
24 |
+
tokens = torch.softmax(a_res['logits'], dim=-1)
|
25 |
+
lengths = a_res['pt_lengths']
|
26 |
+
lengths.clamp_(2, self.max_length) # TODO:move to langauge model
|
27 |
+
l_res = self.language(tokens, lengths)
|
28 |
+
all_l_res.append(l_res)
|
29 |
+
a_res = self.alignment(l_res['feature'], v_res['feature'])
|
30 |
+
all_a_res.append(a_res)
|
31 |
+
if self.training:
|
32 |
+
return all_a_res, all_l_res, v_res
|
33 |
+
else:
|
34 |
+
return a_res, all_l_res[-1], v_res
|
modules/model_alignment.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import Model, _default_tfmer_cfg
|
6 |
+
|
7 |
+
|
8 |
+
class BaseAlignment(Model):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
d_model = ifnone(config.model_alignment_d_model, _default_tfmer_cfg['d_model'])
|
12 |
+
|
13 |
+
self.loss_weight = ifnone(config.model_alignment_loss_weight, 1.0)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.w_att = nn.Linear(2 * d_model, d_model)
|
16 |
+
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
17 |
+
|
18 |
+
def forward(self, l_feature, v_feature):
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
l_feature: (N, T, E) where T is length, N is batch size and d is dim of model
|
22 |
+
v_feature: (N, T, E) shape the same as l_feature
|
23 |
+
l_lengths: (N,)
|
24 |
+
v_lengths: (N,)
|
25 |
+
"""
|
26 |
+
f = torch.cat((l_feature, v_feature), dim=2)
|
27 |
+
f_att = torch.sigmoid(self.w_att(f))
|
28 |
+
output = f_att * v_feature + (1 - f_att) * l_feature
|
29 |
+
|
30 |
+
logits = self.cls(output) # (N, T, C)
|
31 |
+
pt_lengths = self._get_length(logits)
|
32 |
+
|
33 |
+
return {'logits': logits, 'pt_lengths': pt_lengths, 'loss_weight':self.loss_weight,
|
34 |
+
'name': 'alignment'}
|
modules/model_language.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import _default_tfmer_cfg
|
6 |
+
from modules.model import Model
|
7 |
+
from modules.transformer import (PositionalEncoding,
|
8 |
+
TransformerDecoder,
|
9 |
+
TransformerDecoderLayer)
|
10 |
+
|
11 |
+
|
12 |
+
class BCNLanguage(Model):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
d_model = ifnone(config.model_language_d_model, _default_tfmer_cfg['d_model'])
|
16 |
+
nhead = ifnone(config.model_language_nhead, _default_tfmer_cfg['nhead'])
|
17 |
+
d_inner = ifnone(config.model_language_d_inner, _default_tfmer_cfg['d_inner'])
|
18 |
+
dropout = ifnone(config.model_language_dropout, _default_tfmer_cfg['dropout'])
|
19 |
+
activation = ifnone(config.model_language_activation, _default_tfmer_cfg['activation'])
|
20 |
+
num_layers = ifnone(config.model_language_num_layers, 4)
|
21 |
+
self.d_model = d_model
|
22 |
+
self.detach = ifnone(config.model_language_detach, True)
|
23 |
+
self.use_self_attn = ifnone(config.model_language_use_self_attn, False)
|
24 |
+
self.loss_weight = ifnone(config.model_language_loss_weight, 1.0)
|
25 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
26 |
+
self.debug = ifnone(config.global_debug, False)
|
27 |
+
|
28 |
+
self.proj = nn.Linear(self.charset.num_classes, d_model, False)
|
29 |
+
self.token_encoder = PositionalEncoding(d_model, max_len=self.max_length)
|
30 |
+
self.pos_encoder = PositionalEncoding(d_model, dropout=0, max_len=self.max_length)
|
31 |
+
decoder_layer = TransformerDecoderLayer(d_model, nhead, d_inner, dropout,
|
32 |
+
activation, self_attn=self.use_self_attn, debug=self.debug)
|
33 |
+
self.model = TransformerDecoder(decoder_layer, num_layers)
|
34 |
+
|
35 |
+
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
36 |
+
|
37 |
+
if config.model_language_checkpoint is not None:
|
38 |
+
logging.info(f'Read language model from {config.model_language_checkpoint}.')
|
39 |
+
self.load(config.model_language_checkpoint)
|
40 |
+
|
41 |
+
def forward(self, tokens, lengths):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
tokens: (N, T, C) where T is length, N is batch size and C is classes number
|
45 |
+
lengths: (N,)
|
46 |
+
"""
|
47 |
+
if self.detach: tokens = tokens.detach()
|
48 |
+
embed = self.proj(tokens) # (N, T, E)
|
49 |
+
embed = embed.permute(1, 0, 2) # (T, N, E)
|
50 |
+
embed = self.token_encoder(embed) # (T, N, E)
|
51 |
+
padding_mask = self._get_padding_mask(lengths, self.max_length)
|
52 |
+
|
53 |
+
zeros = embed.new_zeros(*embed.shape)
|
54 |
+
qeury = self.pos_encoder(zeros)
|
55 |
+
location_mask = self._get_location_mask(self.max_length, tokens.device)
|
56 |
+
output = self.model(qeury, embed,
|
57 |
+
tgt_key_padding_mask=padding_mask,
|
58 |
+
memory_mask=location_mask,
|
59 |
+
memory_key_padding_mask=padding_mask) # (T, N, E)
|
60 |
+
output = output.permute(1, 0, 2) # (N, T, E)
|
61 |
+
|
62 |
+
logits = self.cls(output) # (N, T, C)
|
63 |
+
pt_lengths = self._get_length(logits)
|
64 |
+
|
65 |
+
res = {'feature': output, 'logits': logits, 'pt_lengths': pt_lengths,
|
66 |
+
'loss_weight':self.loss_weight, 'name': 'language'}
|
67 |
+
return res
|
modules/model_vision.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.attention import *
|
6 |
+
from modules.backbone import ResTranformer
|
7 |
+
from modules.model import Model
|
8 |
+
from modules.resnet import resnet45
|
9 |
+
|
10 |
+
|
11 |
+
class BaseVision(Model):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0)
|
15 |
+
self.out_channels = ifnone(config.model_vision_d_model, 512)
|
16 |
+
|
17 |
+
if config.model_vision_backbone == 'transformer':
|
18 |
+
self.backbone = ResTranformer(config)
|
19 |
+
else: self.backbone = resnet45()
|
20 |
+
|
21 |
+
if config.model_vision_attention == 'position':
|
22 |
+
mode = ifnone(config.model_vision_attention_mode, 'nearest')
|
23 |
+
self.attention = PositionAttention(
|
24 |
+
max_length=config.dataset_max_length + 1, # additional stop token
|
25 |
+
mode=mode,
|
26 |
+
)
|
27 |
+
elif config.model_vision_attention == 'attention':
|
28 |
+
self.attention = Attention(
|
29 |
+
max_length=config.dataset_max_length + 1, # additional stop token
|
30 |
+
n_feature=8*32,
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
raise Exception(f'{config.model_vision_attention} is not valid.')
|
34 |
+
self.cls = nn.Linear(self.out_channels, self.charset.num_classes)
|
35 |
+
|
36 |
+
if config.model_vision_checkpoint is not None:
|
37 |
+
logging.info(f'Read vision model from {config.model_vision_checkpoint}.')
|
38 |
+
self.load(config.model_vision_checkpoint)
|
39 |
+
|
40 |
+
def forward(self, images, *args):
|
41 |
+
features = self.backbone(images) # (N, E, H, W)
|
42 |
+
attn_vecs, attn_scores = self.attention(features) # (N, T, E), (N, T, H, W)
|
43 |
+
logits = self.cls(attn_vecs) # (N, T, C)
|
44 |
+
pt_lengths = self._get_length(logits)
|
45 |
+
|
46 |
+
return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths,
|
47 |
+
'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision'}
|
modules/resnet.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
|
7 |
+
|
8 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
9 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
10 |
+
|
11 |
+
|
12 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
13 |
+
"3x3 convolution with padding"
|
14 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
15 |
+
padding=1, bias=False)
|
16 |
+
|
17 |
+
|
18 |
+
class BasicBlock(nn.Module):
|
19 |
+
expansion = 1
|
20 |
+
|
21 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv1x1(inplanes, planes)
|
24 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
25 |
+
self.relu = nn.ReLU(inplace=True)
|
26 |
+
self.conv2 = conv3x3(planes, planes, stride)
|
27 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
28 |
+
self.downsample = downsample
|
29 |
+
self.stride = stride
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
residual = x
|
33 |
+
|
34 |
+
out = self.conv1(x)
|
35 |
+
out = self.bn1(out)
|
36 |
+
out = self.relu(out)
|
37 |
+
|
38 |
+
out = self.conv2(out)
|
39 |
+
out = self.bn2(out)
|
40 |
+
|
41 |
+
if self.downsample is not None:
|
42 |
+
residual = self.downsample(x)
|
43 |
+
|
44 |
+
out += residual
|
45 |
+
out = self.relu(out)
|
46 |
+
|
47 |
+
return out
|
48 |
+
|
49 |
+
|
50 |
+
class ResNet(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, block, layers):
|
53 |
+
self.inplanes = 32
|
54 |
+
super(ResNet, self).__init__()
|
55 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1,
|
56 |
+
bias=False)
|
57 |
+
self.bn1 = nn.BatchNorm2d(32)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
|
60 |
+
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
|
61 |
+
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
|
62 |
+
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
|
63 |
+
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
|
64 |
+
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
|
65 |
+
|
66 |
+
for m in self.modules():
|
67 |
+
if isinstance(m, nn.Conv2d):
|
68 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
69 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
70 |
+
elif isinstance(m, nn.BatchNorm2d):
|
71 |
+
m.weight.data.fill_(1)
|
72 |
+
m.bias.data.zero_()
|
73 |
+
|
74 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
75 |
+
downsample = None
|
76 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
77 |
+
downsample = nn.Sequential(
|
78 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
79 |
+
kernel_size=1, stride=stride, bias=False),
|
80 |
+
nn.BatchNorm2d(planes * block.expansion),
|
81 |
+
)
|
82 |
+
|
83 |
+
layers = []
|
84 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
85 |
+
self.inplanes = planes * block.expansion
|
86 |
+
for i in range(1, blocks):
|
87 |
+
layers.append(block(self.inplanes, planes))
|
88 |
+
|
89 |
+
return nn.Sequential(*layers)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
x = self.conv1(x)
|
93 |
+
x = self.bn1(x)
|
94 |
+
x = self.relu(x)
|
95 |
+
x = self.layer1(x)
|
96 |
+
x = self.layer2(x)
|
97 |
+
x = self.layer3(x)
|
98 |
+
x = self.layer4(x)
|
99 |
+
x = self.layer5(x)
|
100 |
+
return x
|
101 |
+
|
102 |
+
|
103 |
+
def resnet45():
|
104 |
+
return ResNet(BasicBlock, [3, 4, 6, 6, 3])
|
modules/transformer.py
ADDED
@@ -0,0 +1,901 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch 1.5.0
|
2 |
+
import copy
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from torch.nn.init import constant_, xavier_uniform_
|
13 |
+
|
14 |
+
|
15 |
+
def multi_head_attention_forward(query, # type: Tensor
|
16 |
+
key, # type: Tensor
|
17 |
+
value, # type: Tensor
|
18 |
+
embed_dim_to_check, # type: int
|
19 |
+
num_heads, # type: int
|
20 |
+
in_proj_weight, # type: Tensor
|
21 |
+
in_proj_bias, # type: Tensor
|
22 |
+
bias_k, # type: Optional[Tensor]
|
23 |
+
bias_v, # type: Optional[Tensor]
|
24 |
+
add_zero_attn, # type: bool
|
25 |
+
dropout_p, # type: float
|
26 |
+
out_proj_weight, # type: Tensor
|
27 |
+
out_proj_bias, # type: Tensor
|
28 |
+
training=True, # type: bool
|
29 |
+
key_padding_mask=None, # type: Optional[Tensor]
|
30 |
+
need_weights=True, # type: bool
|
31 |
+
attn_mask=None, # type: Optional[Tensor]
|
32 |
+
use_separate_proj_weight=False, # type: bool
|
33 |
+
q_proj_weight=None, # type: Optional[Tensor]
|
34 |
+
k_proj_weight=None, # type: Optional[Tensor]
|
35 |
+
v_proj_weight=None, # type: Optional[Tensor]
|
36 |
+
static_k=None, # type: Optional[Tensor]
|
37 |
+
static_v=None # type: Optional[Tensor]
|
38 |
+
):
|
39 |
+
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
|
40 |
+
r"""
|
41 |
+
Args:
|
42 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
43 |
+
See "Attention Is All You Need" for more details.
|
44 |
+
embed_dim_to_check: total dimension of the model.
|
45 |
+
num_heads: parallel attention heads.
|
46 |
+
in_proj_weight, in_proj_bias: input projection weight and bias.
|
47 |
+
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
48 |
+
add_zero_attn: add a new batch of zeros to the key and
|
49 |
+
value sequences at dim=1.
|
50 |
+
dropout_p: probability of an element to be zeroed.
|
51 |
+
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
52 |
+
training: apply dropout if is ``True``.
|
53 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
54 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
55 |
+
the corresponding value on the attention layer will be filled with -inf.
|
56 |
+
need_weights: output attn_output_weights.
|
57 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
58 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
59 |
+
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
60 |
+
and value in different forms. If false, in_proj_weight will be used, which is
|
61 |
+
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
62 |
+
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
63 |
+
static_k, static_v: static key and value used for attention operators.
|
64 |
+
Shape:
|
65 |
+
Inputs:
|
66 |
+
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
67 |
+
the embedding dimension.
|
68 |
+
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
69 |
+
the embedding dimension.
|
70 |
+
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
71 |
+
the embedding dimension.
|
72 |
+
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
73 |
+
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
74 |
+
will be unchanged. If a BoolTensor is provided, the positions with the
|
75 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
76 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
77 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
78 |
+
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
79 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
80 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
81 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
82 |
+
is provided, it will be added to the attention weight.
|
83 |
+
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
84 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
85 |
+
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
86 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
87 |
+
Outputs:
|
88 |
+
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
89 |
+
E is the embedding dimension.
|
90 |
+
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
91 |
+
L is the target sequence length, S is the source sequence length.
|
92 |
+
"""
|
93 |
+
# if not torch.jit.is_scripting():
|
94 |
+
# tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
|
95 |
+
# out_proj_weight, out_proj_bias)
|
96 |
+
# if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
|
97 |
+
# return handle_torch_function(
|
98 |
+
# multi_head_attention_forward, tens_ops, query, key, value,
|
99 |
+
# embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
|
100 |
+
# bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
|
101 |
+
# out_proj_bias, training=training, key_padding_mask=key_padding_mask,
|
102 |
+
# need_weights=need_weights, attn_mask=attn_mask,
|
103 |
+
# use_separate_proj_weight=use_separate_proj_weight,
|
104 |
+
# q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
|
105 |
+
# v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
|
106 |
+
tgt_len, bsz, embed_dim = query.size()
|
107 |
+
assert embed_dim == embed_dim_to_check
|
108 |
+
assert key.size() == value.size()
|
109 |
+
|
110 |
+
head_dim = embed_dim // num_heads
|
111 |
+
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
|
112 |
+
scaling = float(head_dim) ** -0.5
|
113 |
+
|
114 |
+
if not use_separate_proj_weight:
|
115 |
+
if torch.equal(query, key) and torch.equal(key, value):
|
116 |
+
# self-attention
|
117 |
+
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
|
118 |
+
|
119 |
+
elif torch.equal(key, value):
|
120 |
+
# encoder-decoder attention
|
121 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
122 |
+
_b = in_proj_bias
|
123 |
+
_start = 0
|
124 |
+
_end = embed_dim
|
125 |
+
_w = in_proj_weight[_start:_end, :]
|
126 |
+
if _b is not None:
|
127 |
+
_b = _b[_start:_end]
|
128 |
+
q = F.linear(query, _w, _b)
|
129 |
+
|
130 |
+
if key is None:
|
131 |
+
assert value is None
|
132 |
+
k = None
|
133 |
+
v = None
|
134 |
+
else:
|
135 |
+
|
136 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
137 |
+
_b = in_proj_bias
|
138 |
+
_start = embed_dim
|
139 |
+
_end = None
|
140 |
+
_w = in_proj_weight[_start:, :]
|
141 |
+
if _b is not None:
|
142 |
+
_b = _b[_start:]
|
143 |
+
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
|
144 |
+
|
145 |
+
else:
|
146 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
147 |
+
_b = in_proj_bias
|
148 |
+
_start = 0
|
149 |
+
_end = embed_dim
|
150 |
+
_w = in_proj_weight[_start:_end, :]
|
151 |
+
if _b is not None:
|
152 |
+
_b = _b[_start:_end]
|
153 |
+
q = F.linear(query, _w, _b)
|
154 |
+
|
155 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
156 |
+
_b = in_proj_bias
|
157 |
+
_start = embed_dim
|
158 |
+
_end = embed_dim * 2
|
159 |
+
_w = in_proj_weight[_start:_end, :]
|
160 |
+
if _b is not None:
|
161 |
+
_b = _b[_start:_end]
|
162 |
+
k = F.linear(key, _w, _b)
|
163 |
+
|
164 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
165 |
+
_b = in_proj_bias
|
166 |
+
_start = embed_dim * 2
|
167 |
+
_end = None
|
168 |
+
_w = in_proj_weight[_start:, :]
|
169 |
+
if _b is not None:
|
170 |
+
_b = _b[_start:]
|
171 |
+
v = F.linear(value, _w, _b)
|
172 |
+
else:
|
173 |
+
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
|
174 |
+
len1, len2 = q_proj_weight_non_opt.size()
|
175 |
+
assert len1 == embed_dim and len2 == query.size(-1)
|
176 |
+
|
177 |
+
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
|
178 |
+
len1, len2 = k_proj_weight_non_opt.size()
|
179 |
+
assert len1 == embed_dim and len2 == key.size(-1)
|
180 |
+
|
181 |
+
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
|
182 |
+
len1, len2 = v_proj_weight_non_opt.size()
|
183 |
+
assert len1 == embed_dim and len2 == value.size(-1)
|
184 |
+
|
185 |
+
if in_proj_bias is not None:
|
186 |
+
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
|
187 |
+
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
|
188 |
+
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
|
189 |
+
else:
|
190 |
+
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
|
191 |
+
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
|
192 |
+
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
|
193 |
+
q = q * scaling
|
194 |
+
|
195 |
+
if attn_mask is not None:
|
196 |
+
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
|
197 |
+
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
|
198 |
+
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
|
199 |
+
if attn_mask.dtype == torch.uint8:
|
200 |
+
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
201 |
+
attn_mask = attn_mask.to(torch.bool)
|
202 |
+
|
203 |
+
if attn_mask.dim() == 2:
|
204 |
+
attn_mask = attn_mask.unsqueeze(0)
|
205 |
+
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
206 |
+
raise RuntimeError('The size of the 2D attn_mask is not correct.')
|
207 |
+
elif attn_mask.dim() == 3:
|
208 |
+
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
|
209 |
+
raise RuntimeError('The size of the 3D attn_mask is not correct.')
|
210 |
+
else:
|
211 |
+
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
|
212 |
+
# attn_mask's dim is 3 now.
|
213 |
+
|
214 |
+
# # convert ByteTensor key_padding_mask to bool
|
215 |
+
# if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
216 |
+
# warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
217 |
+
# key_padding_mask = key_padding_mask.to(torch.bool)
|
218 |
+
|
219 |
+
if bias_k is not None and bias_v is not None:
|
220 |
+
if static_k is None and static_v is None:
|
221 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
222 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
223 |
+
if attn_mask is not None:
|
224 |
+
attn_mask = pad(attn_mask, (0, 1))
|
225 |
+
if key_padding_mask is not None:
|
226 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
227 |
+
else:
|
228 |
+
assert static_k is None, "bias cannot be added to static key."
|
229 |
+
assert static_v is None, "bias cannot be added to static value."
|
230 |
+
else:
|
231 |
+
assert bias_k is None
|
232 |
+
assert bias_v is None
|
233 |
+
|
234 |
+
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
235 |
+
if k is not None:
|
236 |
+
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
237 |
+
if v is not None:
|
238 |
+
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
239 |
+
|
240 |
+
if static_k is not None:
|
241 |
+
assert static_k.size(0) == bsz * num_heads
|
242 |
+
assert static_k.size(2) == head_dim
|
243 |
+
k = static_k
|
244 |
+
|
245 |
+
if static_v is not None:
|
246 |
+
assert static_v.size(0) == bsz * num_heads
|
247 |
+
assert static_v.size(2) == head_dim
|
248 |
+
v = static_v
|
249 |
+
|
250 |
+
src_len = k.size(1)
|
251 |
+
|
252 |
+
if key_padding_mask is not None:
|
253 |
+
assert key_padding_mask.size(0) == bsz
|
254 |
+
assert key_padding_mask.size(1) == src_len
|
255 |
+
|
256 |
+
if add_zero_attn:
|
257 |
+
src_len += 1
|
258 |
+
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
|
259 |
+
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
|
260 |
+
if attn_mask is not None:
|
261 |
+
attn_mask = pad(attn_mask, (0, 1))
|
262 |
+
if key_padding_mask is not None:
|
263 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
264 |
+
|
265 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
266 |
+
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
|
267 |
+
|
268 |
+
if attn_mask is not None:
|
269 |
+
if attn_mask.dtype == torch.bool:
|
270 |
+
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
|
271 |
+
else:
|
272 |
+
attn_output_weights += attn_mask
|
273 |
+
|
274 |
+
|
275 |
+
if key_padding_mask is not None:
|
276 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
277 |
+
attn_output_weights = attn_output_weights.masked_fill(
|
278 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
279 |
+
float('-inf'),
|
280 |
+
)
|
281 |
+
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
|
282 |
+
|
283 |
+
attn_output_weights = F.softmax(
|
284 |
+
attn_output_weights, dim=-1)
|
285 |
+
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
|
286 |
+
|
287 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
288 |
+
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
289 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
290 |
+
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
|
291 |
+
|
292 |
+
if need_weights:
|
293 |
+
# average attention weights over heads
|
294 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
295 |
+
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
296 |
+
else:
|
297 |
+
return attn_output, None
|
298 |
+
|
299 |
+
class MultiheadAttention(Module):
|
300 |
+
r"""Allows the model to jointly attend to information
|
301 |
+
from different representation subspaces.
|
302 |
+
See reference: Attention Is All You Need
|
303 |
+
.. math::
|
304 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
305 |
+
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
306 |
+
Args:
|
307 |
+
embed_dim: total dimension of the model.
|
308 |
+
num_heads: parallel attention heads.
|
309 |
+
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
310 |
+
bias: add bias as module parameter. Default: True.
|
311 |
+
add_bias_kv: add bias to the key and value sequences at dim=0.
|
312 |
+
add_zero_attn: add a new batch of zeros to the key and
|
313 |
+
value sequences at dim=1.
|
314 |
+
kdim: total number of features in key. Default: None.
|
315 |
+
vdim: total number of features in value. Default: None.
|
316 |
+
Note: if kdim and vdim are None, they will be set to embed_dim such that
|
317 |
+
query, key, and value have the same number of features.
|
318 |
+
Examples::
|
319 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
320 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
321 |
+
"""
|
322 |
+
# __annotations__ = {
|
323 |
+
# 'bias_k': torch._jit_internal.Optional[torch.Tensor],
|
324 |
+
# 'bias_v': torch._jit_internal.Optional[torch.Tensor],
|
325 |
+
# }
|
326 |
+
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight']
|
327 |
+
|
328 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
|
329 |
+
super(MultiheadAttention, self).__init__()
|
330 |
+
self.embed_dim = embed_dim
|
331 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
332 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
333 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
334 |
+
|
335 |
+
self.num_heads = num_heads
|
336 |
+
self.dropout = dropout
|
337 |
+
self.head_dim = embed_dim // num_heads
|
338 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
339 |
+
|
340 |
+
if self._qkv_same_embed_dim is False:
|
341 |
+
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
|
342 |
+
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
|
343 |
+
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
|
344 |
+
self.register_parameter('in_proj_weight', None)
|
345 |
+
else:
|
346 |
+
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
347 |
+
self.register_parameter('q_proj_weight', None)
|
348 |
+
self.register_parameter('k_proj_weight', None)
|
349 |
+
self.register_parameter('v_proj_weight', None)
|
350 |
+
|
351 |
+
if bias:
|
352 |
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
353 |
+
else:
|
354 |
+
self.register_parameter('in_proj_bias', None)
|
355 |
+
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
356 |
+
|
357 |
+
if add_bias_kv:
|
358 |
+
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
|
359 |
+
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
|
360 |
+
else:
|
361 |
+
self.bias_k = self.bias_v = None
|
362 |
+
|
363 |
+
self.add_zero_attn = add_zero_attn
|
364 |
+
|
365 |
+
self._reset_parameters()
|
366 |
+
|
367 |
+
def _reset_parameters(self):
|
368 |
+
if self._qkv_same_embed_dim:
|
369 |
+
xavier_uniform_(self.in_proj_weight)
|
370 |
+
else:
|
371 |
+
xavier_uniform_(self.q_proj_weight)
|
372 |
+
xavier_uniform_(self.k_proj_weight)
|
373 |
+
xavier_uniform_(self.v_proj_weight)
|
374 |
+
|
375 |
+
if self.in_proj_bias is not None:
|
376 |
+
constant_(self.in_proj_bias, 0.)
|
377 |
+
constant_(self.out_proj.bias, 0.)
|
378 |
+
if self.bias_k is not None:
|
379 |
+
xavier_normal_(self.bias_k)
|
380 |
+
if self.bias_v is not None:
|
381 |
+
xavier_normal_(self.bias_v)
|
382 |
+
|
383 |
+
def __setstate__(self, state):
|
384 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
385 |
+
if '_qkv_same_embed_dim' not in state:
|
386 |
+
state['_qkv_same_embed_dim'] = True
|
387 |
+
|
388 |
+
super(MultiheadAttention, self).__setstate__(state)
|
389 |
+
|
390 |
+
def forward(self, query, key, value, key_padding_mask=None,
|
391 |
+
need_weights=True, attn_mask=None):
|
392 |
+
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
|
393 |
+
r"""
|
394 |
+
Args:
|
395 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
396 |
+
See "Attention Is All You Need" for more details.
|
397 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
398 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
399 |
+
the corresponding value on the attention layer will be filled with -inf.
|
400 |
+
need_weights: output attn_output_weights.
|
401 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
402 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
403 |
+
Shape:
|
404 |
+
- Inputs:
|
405 |
+
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
406 |
+
the embedding dimension.
|
407 |
+
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
408 |
+
the embedding dimension.
|
409 |
+
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
410 |
+
the embedding dimension.
|
411 |
+
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
412 |
+
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
413 |
+
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
414 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
415 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
416 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
417 |
+
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
418 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
419 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
420 |
+
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
421 |
+
is provided, it will be added to the attention weight.
|
422 |
+
- Outputs:
|
423 |
+
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
424 |
+
E is the embedding dimension.
|
425 |
+
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
426 |
+
L is the target sequence length, S is the source sequence length.
|
427 |
+
"""
|
428 |
+
if not self._qkv_same_embed_dim:
|
429 |
+
return multi_head_attention_forward(
|
430 |
+
query, key, value, self.embed_dim, self.num_heads,
|
431 |
+
self.in_proj_weight, self.in_proj_bias,
|
432 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
433 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
434 |
+
training=self.training,
|
435 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
436 |
+
attn_mask=attn_mask, use_separate_proj_weight=True,
|
437 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
438 |
+
v_proj_weight=self.v_proj_weight)
|
439 |
+
else:
|
440 |
+
return multi_head_attention_forward(
|
441 |
+
query, key, value, self.embed_dim, self.num_heads,
|
442 |
+
self.in_proj_weight, self.in_proj_bias,
|
443 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
444 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
445 |
+
training=self.training,
|
446 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
447 |
+
attn_mask=attn_mask)
|
448 |
+
|
449 |
+
|
450 |
+
class Transformer(Module):
|
451 |
+
r"""A transformer model. User is able to modify the attributes as needed. The architecture
|
452 |
+
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
453 |
+
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
454 |
+
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
455 |
+
Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805)
|
456 |
+
model with corresponding parameters.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
d_model: the number of expected features in the encoder/decoder inputs (default=512).
|
460 |
+
nhead: the number of heads in the multiheadattention models (default=8).
|
461 |
+
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
|
462 |
+
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
|
463 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
464 |
+
dropout: the dropout value (default=0.1).
|
465 |
+
activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
|
466 |
+
custom_encoder: custom encoder (default=None).
|
467 |
+
custom_decoder: custom decoder (default=None).
|
468 |
+
|
469 |
+
Examples::
|
470 |
+
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
|
471 |
+
>>> src = torch.rand((10, 32, 512))
|
472 |
+
>>> tgt = torch.rand((20, 32, 512))
|
473 |
+
>>> out = transformer_model(src, tgt)
|
474 |
+
|
475 |
+
Note: A full example to apply nn.Transformer module for the word language model is available in
|
476 |
+
https://github.com/pytorch/examples/tree/master/word_language_model
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
|
480 |
+
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
|
481 |
+
activation="relu", custom_encoder=None, custom_decoder=None):
|
482 |
+
super(Transformer, self).__init__()
|
483 |
+
|
484 |
+
if custom_encoder is not None:
|
485 |
+
self.encoder = custom_encoder
|
486 |
+
else:
|
487 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
488 |
+
encoder_norm = LayerNorm(d_model)
|
489 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
490 |
+
|
491 |
+
if custom_decoder is not None:
|
492 |
+
self.decoder = custom_decoder
|
493 |
+
else:
|
494 |
+
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
495 |
+
decoder_norm = LayerNorm(d_model)
|
496 |
+
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
497 |
+
|
498 |
+
self._reset_parameters()
|
499 |
+
|
500 |
+
self.d_model = d_model
|
501 |
+
self.nhead = nhead
|
502 |
+
|
503 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None,
|
504 |
+
memory_mask=None, src_key_padding_mask=None,
|
505 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
506 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa
|
507 |
+
r"""Take in and process masked source/target sequences.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
src: the sequence to the encoder (required).
|
511 |
+
tgt: the sequence to the decoder (required).
|
512 |
+
src_mask: the additive mask for the src sequence (optional).
|
513 |
+
tgt_mask: the additive mask for the tgt sequence (optional).
|
514 |
+
memory_mask: the additive mask for the encoder output (optional).
|
515 |
+
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
|
516 |
+
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
|
517 |
+
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
|
518 |
+
|
519 |
+
Shape:
|
520 |
+
- src: :math:`(S, N, E)`.
|
521 |
+
- tgt: :math:`(T, N, E)`.
|
522 |
+
- src_mask: :math:`(S, S)`.
|
523 |
+
- tgt_mask: :math:`(T, T)`.
|
524 |
+
- memory_mask: :math:`(T, S)`.
|
525 |
+
- src_key_padding_mask: :math:`(N, S)`.
|
526 |
+
- tgt_key_padding_mask: :math:`(N, T)`.
|
527 |
+
- memory_key_padding_mask: :math:`(N, S)`.
|
528 |
+
|
529 |
+
Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked
|
530 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
531 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
532 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
533 |
+
is provided, it will be added to the attention weight.
|
534 |
+
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
|
535 |
+
the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero
|
536 |
+
positions will be unchanged. If a BoolTensor is provided, the positions with the
|
537 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
538 |
+
|
539 |
+
- output: :math:`(T, N, E)`.
|
540 |
+
|
541 |
+
Note: Due to the multi-head attention architecture in the transformer model,
|
542 |
+
the output sequence length of a transformer is same as the input sequence
|
543 |
+
(i.e. target) length of the decode.
|
544 |
+
|
545 |
+
where S is the source sequence length, T is the target sequence length, N is the
|
546 |
+
batch size, E is the feature number
|
547 |
+
|
548 |
+
Examples:
|
549 |
+
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
|
550 |
+
"""
|
551 |
+
|
552 |
+
if src.size(1) != tgt.size(1):
|
553 |
+
raise RuntimeError("the batch number of src and tgt must be equal")
|
554 |
+
|
555 |
+
if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
|
556 |
+
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
|
557 |
+
|
558 |
+
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
|
559 |
+
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
560 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
561 |
+
memory_key_padding_mask=memory_key_padding_mask)
|
562 |
+
return output
|
563 |
+
|
564 |
+
def generate_square_subsequent_mask(self, sz):
|
565 |
+
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
566 |
+
Unmasked positions are filled with float(0.0).
|
567 |
+
"""
|
568 |
+
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
569 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
570 |
+
return mask
|
571 |
+
|
572 |
+
def _reset_parameters(self):
|
573 |
+
r"""Initiate parameters in the transformer model."""
|
574 |
+
|
575 |
+
for p in self.parameters():
|
576 |
+
if p.dim() > 1:
|
577 |
+
xavier_uniform_(p)
|
578 |
+
|
579 |
+
|
580 |
+
class TransformerEncoder(Module):
|
581 |
+
r"""TransformerEncoder is a stack of N encoder layers
|
582 |
+
|
583 |
+
Args:
|
584 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
585 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
586 |
+
norm: the layer normalization component (optional).
|
587 |
+
|
588 |
+
Examples::
|
589 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
590 |
+
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
|
591 |
+
>>> src = torch.rand(10, 32, 512)
|
592 |
+
>>> out = transformer_encoder(src)
|
593 |
+
"""
|
594 |
+
__constants__ = ['norm']
|
595 |
+
|
596 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
597 |
+
super(TransformerEncoder, self).__init__()
|
598 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
599 |
+
self.num_layers = num_layers
|
600 |
+
self.norm = norm
|
601 |
+
|
602 |
+
def forward(self, src, mask=None, src_key_padding_mask=None):
|
603 |
+
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
604 |
+
r"""Pass the input through the encoder layers in turn.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
src: the sequence to the encoder (required).
|
608 |
+
mask: the mask for the src sequence (optional).
|
609 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
610 |
+
|
611 |
+
Shape:
|
612 |
+
see the docs in Transformer class.
|
613 |
+
"""
|
614 |
+
output = src
|
615 |
+
|
616 |
+
for i, mod in enumerate(self.layers):
|
617 |
+
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
|
618 |
+
|
619 |
+
if self.norm is not None:
|
620 |
+
output = self.norm(output)
|
621 |
+
|
622 |
+
return output
|
623 |
+
|
624 |
+
|
625 |
+
class TransformerDecoder(Module):
|
626 |
+
r"""TransformerDecoder is a stack of N decoder layers
|
627 |
+
|
628 |
+
Args:
|
629 |
+
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
|
630 |
+
num_layers: the number of sub-decoder-layers in the decoder (required).
|
631 |
+
norm: the layer normalization component (optional).
|
632 |
+
|
633 |
+
Examples::
|
634 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
635 |
+
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
636 |
+
>>> memory = torch.rand(10, 32, 512)
|
637 |
+
>>> tgt = torch.rand(20, 32, 512)
|
638 |
+
>>> out = transformer_decoder(tgt, memory)
|
639 |
+
"""
|
640 |
+
__constants__ = ['norm']
|
641 |
+
|
642 |
+
def __init__(self, decoder_layer, num_layers, norm=None):
|
643 |
+
super(TransformerDecoder, self).__init__()
|
644 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
645 |
+
self.num_layers = num_layers
|
646 |
+
self.norm = norm
|
647 |
+
|
648 |
+
def forward(self, tgt, memory, memory2=None, tgt_mask=None,
|
649 |
+
memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None,
|
650 |
+
memory_key_padding_mask=None, memory_key_padding_mask2=None):
|
651 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
652 |
+
r"""Pass the inputs (and mask) through the decoder layer in turn.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
tgt: the sequence to the decoder (required).
|
656 |
+
memory: the sequence from the last layer of the encoder (required).
|
657 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
658 |
+
memory_mask: the mask for the memory sequence (optional).
|
659 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
660 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
661 |
+
|
662 |
+
Shape:
|
663 |
+
see the docs in Transformer class.
|
664 |
+
"""
|
665 |
+
output = tgt
|
666 |
+
|
667 |
+
for mod in self.layers:
|
668 |
+
output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask,
|
669 |
+
memory_mask=memory_mask, memory_mask2=memory_mask2,
|
670 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
671 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
672 |
+
memory_key_padding_mask2=memory_key_padding_mask2)
|
673 |
+
|
674 |
+
if self.norm is not None:
|
675 |
+
output = self.norm(output)
|
676 |
+
|
677 |
+
return output
|
678 |
+
|
679 |
+
class TransformerEncoderLayer(Module):
|
680 |
+
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
681 |
+
This standard encoder layer is based on the paper "Attention Is All You Need".
|
682 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
683 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
684 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
685 |
+
in a different way during application.
|
686 |
+
|
687 |
+
Args:
|
688 |
+
d_model: the number of expected features in the input (required).
|
689 |
+
nhead: the number of heads in the multiheadattention models (required).
|
690 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
691 |
+
dropout: the dropout value (default=0.1).
|
692 |
+
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
693 |
+
|
694 |
+
Examples::
|
695 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
696 |
+
>>> src = torch.rand(10, 32, 512)
|
697 |
+
>>> out = encoder_layer(src)
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
701 |
+
activation="relu", debug=False):
|
702 |
+
super(TransformerEncoderLayer, self).__init__()
|
703 |
+
self.debug = debug
|
704 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
705 |
+
# Implementation of Feedforward model
|
706 |
+
self.linear1 = Linear(d_model, dim_feedforward)
|
707 |
+
self.dropout = Dropout(dropout)
|
708 |
+
self.linear2 = Linear(dim_feedforward, d_model)
|
709 |
+
|
710 |
+
self.norm1 = LayerNorm(d_model)
|
711 |
+
self.norm2 = LayerNorm(d_model)
|
712 |
+
self.dropout1 = Dropout(dropout)
|
713 |
+
self.dropout2 = Dropout(dropout)
|
714 |
+
|
715 |
+
self.activation = _get_activation_fn(activation)
|
716 |
+
|
717 |
+
def __setstate__(self, state):
|
718 |
+
if 'activation' not in state:
|
719 |
+
state['activation'] = F.relu
|
720 |
+
super(TransformerEncoderLayer, self).__setstate__(state)
|
721 |
+
|
722 |
+
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
723 |
+
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
724 |
+
r"""Pass the input through the encoder layer.
|
725 |
+
|
726 |
+
Args:
|
727 |
+
src: the sequence to the encoder layer (required).
|
728 |
+
src_mask: the mask for the src sequence (optional).
|
729 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
730 |
+
|
731 |
+
Shape:
|
732 |
+
see the docs in Transformer class.
|
733 |
+
"""
|
734 |
+
src2, attn = self.self_attn(src, src, src, attn_mask=src_mask,
|
735 |
+
key_padding_mask=src_key_padding_mask)
|
736 |
+
if self.debug: self.attn = attn
|
737 |
+
src = src + self.dropout1(src2)
|
738 |
+
src = self.norm1(src)
|
739 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
740 |
+
src = src + self.dropout2(src2)
|
741 |
+
src = self.norm2(src)
|
742 |
+
|
743 |
+
return src
|
744 |
+
|
745 |
+
|
746 |
+
class TransformerDecoderLayer(Module):
|
747 |
+
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
|
748 |
+
This standard decoder layer is based on the paper "Attention Is All You Need".
|
749 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
750 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
751 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
752 |
+
in a different way during application.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
d_model: the number of expected features in the input (required).
|
756 |
+
nhead: the number of heads in the multiheadattention models (required).
|
757 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
758 |
+
dropout: the dropout value (default=0.1).
|
759 |
+
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
760 |
+
|
761 |
+
Examples::
|
762 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
763 |
+
>>> memory = torch.rand(10, 32, 512)
|
764 |
+
>>> tgt = torch.rand(20, 32, 512)
|
765 |
+
>>> out = decoder_layer(tgt, memory)
|
766 |
+
"""
|
767 |
+
|
768 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
769 |
+
activation="relu", self_attn=True, siamese=False, debug=False):
|
770 |
+
super(TransformerDecoderLayer, self).__init__()
|
771 |
+
self.has_self_attn, self.siamese = self_attn, siamese
|
772 |
+
self.debug = debug
|
773 |
+
if self.has_self_attn:
|
774 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
775 |
+
self.norm1 = LayerNorm(d_model)
|
776 |
+
self.dropout1 = Dropout(dropout)
|
777 |
+
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
778 |
+
# Implementation of Feedforward model
|
779 |
+
self.linear1 = Linear(d_model, dim_feedforward)
|
780 |
+
self.dropout = Dropout(dropout)
|
781 |
+
self.linear2 = Linear(dim_feedforward, d_model)
|
782 |
+
|
783 |
+
self.norm2 = LayerNorm(d_model)
|
784 |
+
self.norm3 = LayerNorm(d_model)
|
785 |
+
self.dropout2 = Dropout(dropout)
|
786 |
+
self.dropout3 = Dropout(dropout)
|
787 |
+
if self.siamese:
|
788 |
+
self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout)
|
789 |
+
|
790 |
+
self.activation = _get_activation_fn(activation)
|
791 |
+
|
792 |
+
def __setstate__(self, state):
|
793 |
+
if 'activation' not in state:
|
794 |
+
state['activation'] = F.relu
|
795 |
+
super(TransformerDecoderLayer, self).__setstate__(state)
|
796 |
+
|
797 |
+
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
798 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
799 |
+
memory2=None, memory_mask2=None, memory_key_padding_mask2=None):
|
800 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
801 |
+
r"""Pass the inputs (and mask) through the decoder layer.
|
802 |
+
|
803 |
+
Args:
|
804 |
+
tgt: the sequence to the decoder layer (required).
|
805 |
+
memory: the sequence from the last layer of the encoder (required).
|
806 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
807 |
+
memory_mask: the mask for the memory sequence (optional).
|
808 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
809 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
810 |
+
|
811 |
+
Shape:
|
812 |
+
see the docs in Transformer class.
|
813 |
+
"""
|
814 |
+
if self.has_self_attn:
|
815 |
+
tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
|
816 |
+
key_padding_mask=tgt_key_padding_mask)
|
817 |
+
tgt = tgt + self.dropout1(tgt2)
|
818 |
+
tgt = self.norm1(tgt)
|
819 |
+
if self.debug: self.attn = attn
|
820 |
+
tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
|
821 |
+
key_padding_mask=memory_key_padding_mask)
|
822 |
+
if self.debug: self.attn2 = attn2
|
823 |
+
|
824 |
+
if self.siamese:
|
825 |
+
tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2,
|
826 |
+
key_padding_mask=memory_key_padding_mask2)
|
827 |
+
tgt = tgt + self.dropout2(tgt3)
|
828 |
+
if self.debug: self.attn3 = attn3
|
829 |
+
|
830 |
+
tgt = tgt + self.dropout2(tgt2)
|
831 |
+
tgt = self.norm2(tgt)
|
832 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
833 |
+
tgt = tgt + self.dropout3(tgt2)
|
834 |
+
tgt = self.norm3(tgt)
|
835 |
+
|
836 |
+
return tgt
|
837 |
+
|
838 |
+
|
839 |
+
def _get_clones(module, N):
|
840 |
+
return ModuleList([copy.deepcopy(module) for i in range(N)])
|
841 |
+
|
842 |
+
|
843 |
+
def _get_activation_fn(activation):
|
844 |
+
if activation == "relu":
|
845 |
+
return F.relu
|
846 |
+
elif activation == "gelu":
|
847 |
+
return F.gelu
|
848 |
+
|
849 |
+
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
850 |
+
|
851 |
+
|
852 |
+
class PositionalEncoding(nn.Module):
|
853 |
+
r"""Inject some information about the relative or absolute position of the tokens
|
854 |
+
in the sequence. The positional encodings have the same dimension as
|
855 |
+
the embeddings, so that the two can be summed. Here, we use sine and cosine
|
856 |
+
functions of different frequencies.
|
857 |
+
.. math::
|
858 |
+
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
|
859 |
+
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
|
860 |
+
\text{where pos is the word position and i is the embed idx)
|
861 |
+
Args:
|
862 |
+
d_model: the embed dim (required).
|
863 |
+
dropout: the dropout value (default=0.1).
|
864 |
+
max_len: the max. length of the incoming sequence (default=5000).
|
865 |
+
Examples:
|
866 |
+
>>> pos_encoder = PositionalEncoding(d_model)
|
867 |
+
"""
|
868 |
+
|
869 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
870 |
+
super(PositionalEncoding, self).__init__()
|
871 |
+
self.dropout = nn.Dropout(p=dropout)
|
872 |
+
|
873 |
+
pe = torch.zeros(max_len, d_model)
|
874 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
875 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
876 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
877 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
878 |
+
pe = pe.unsqueeze(0).transpose(0, 1)
|
879 |
+
self.register_buffer('pe', pe)
|
880 |
+
|
881 |
+
def forward(self, x):
|
882 |
+
r"""Inputs of forward function
|
883 |
+
Args:
|
884 |
+
x: the sequence fed to the positional encoder model (required).
|
885 |
+
Shape:
|
886 |
+
x: [sequence length, batch size, embed dim]
|
887 |
+
output: [sequence length, batch size, embed dim]
|
888 |
+
Examples:
|
889 |
+
>>> output = pos_encoder(x)
|
890 |
+
"""
|
891 |
+
|
892 |
+
x = x + self.pe[:x.size(0), :]
|
893 |
+
return self.dropout(x)
|
894 |
+
|
895 |
+
|
896 |
+
if __name__ == '__main__':
|
897 |
+
transformer_model = Transformer(nhead=16, num_encoder_layers=12)
|
898 |
+
src = torch.rand((10, 32, 512))
|
899 |
+
tgt = torch.rand((20, 32, 512))
|
900 |
+
out = transformer_model(src, tgt)
|
901 |
+
print(out)
|
requirements.txt
CHANGED
@@ -1,11 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
ninja
|
2 |
yacs
|
3 |
cython
|
4 |
matplotlib
|
5 |
tqdm
|
6 |
-
opencv-python
|
7 |
-
torch==1.4.0
|
8 |
-
torchvision==0.5.0
|
9 |
shapely
|
10 |
scipy
|
11 |
networkx
|
|
|
1 |
+
torch==1.4.0
|
2 |
+
torchvision==0.5.0
|
3 |
+
fastai==1.0.60
|
4 |
+
LMDB
|
5 |
+
Pillow
|
6 |
+
opencv-python
|
7 |
+
tensorboardX
|
8 |
+
PyYAML
|
9 |
+
gdown
|
10 |
ninja
|
11 |
yacs
|
12 |
cython
|
13 |
matplotlib
|
14 |
tqdm
|
|
|
|
|
|
|
15 |
shapely
|
16 |
scipy
|
17 |
networkx
|
utils.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import yaml
|
9 |
+
from matplotlib import colors
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
from torch import Tensor, nn
|
12 |
+
from torch.utils.data import ConcatDataset
|
13 |
+
|
14 |
+
class CharsetMapper(object):
|
15 |
+
"""A simple class to map ids into strings.
|
16 |
+
|
17 |
+
It works only when the character set is 1:1 mapping between individual
|
18 |
+
characters and individual ids.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self,
|
22 |
+
filename='',
|
23 |
+
max_length=30,
|
24 |
+
null_char=u'\u2591'):
|
25 |
+
"""Creates a lookup table.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
filename: Path to charset file which maps characters to ids.
|
29 |
+
max_sequence_length: The max length of ids and string.
|
30 |
+
null_char: A unicode character used to replace '<null>' character.
|
31 |
+
the default value is a light shade block '░'.
|
32 |
+
"""
|
33 |
+
self.null_char = null_char
|
34 |
+
self.max_length = max_length
|
35 |
+
|
36 |
+
self.label_to_char = self._read_charset(filename)
|
37 |
+
self.char_to_label = dict(map(reversed, self.label_to_char.items()))
|
38 |
+
self.num_classes = len(self.label_to_char)
|
39 |
+
|
40 |
+
def _read_charset(self, filename):
|
41 |
+
"""Reads a charset definition from a tab separated text file.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
filename: a path to the charset file.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
a dictionary with keys equal to character codes and values - unicode
|
48 |
+
characters.
|
49 |
+
"""
|
50 |
+
import re
|
51 |
+
pattern = re.compile(r'(\d+)\t(.+)')
|
52 |
+
charset = {}
|
53 |
+
self.null_label = 0
|
54 |
+
charset[self.null_label] = self.null_char
|
55 |
+
with open(filename, 'r') as f:
|
56 |
+
for i, line in enumerate(f):
|
57 |
+
m = pattern.match(line)
|
58 |
+
assert m, f'Incorrect charset file. line #{i}: {line}'
|
59 |
+
label = int(m.group(1)) + 1
|
60 |
+
char = m.group(2)
|
61 |
+
charset[label] = char
|
62 |
+
return charset
|
63 |
+
|
64 |
+
def trim(self, text):
|
65 |
+
assert isinstance(text, str)
|
66 |
+
return text.replace(self.null_char, '')
|
67 |
+
|
68 |
+
def get_text(self, labels, length=None, padding=True, trim=False):
|
69 |
+
""" Returns a string corresponding to a sequence of character ids.
|
70 |
+
"""
|
71 |
+
length = length if length else self.max_length
|
72 |
+
labels = [l.item() if isinstance(l, Tensor) else int(l) for l in labels]
|
73 |
+
if padding:
|
74 |
+
labels = labels + [self.null_label] * (length-len(labels))
|
75 |
+
text = ''.join([self.label_to_char[label] for label in labels])
|
76 |
+
if trim: text = self.trim(text)
|
77 |
+
return text
|
78 |
+
|
79 |
+
def get_labels(self, text, length=None, padding=True, case_sensitive=False):
|
80 |
+
""" Returns the labels of the corresponding text.
|
81 |
+
"""
|
82 |
+
length = length if length else self.max_length
|
83 |
+
if padding:
|
84 |
+
text = text + self.null_char * (length - len(text))
|
85 |
+
if not case_sensitive:
|
86 |
+
text = text.lower()
|
87 |
+
labels = [self.char_to_label[char] for char in text]
|
88 |
+
return labels
|
89 |
+
|
90 |
+
def pad_labels(self, labels, length=None):
|
91 |
+
length = length if length else self.max_length
|
92 |
+
|
93 |
+
return labels + [self.null_label] * (length - len(labels))
|
94 |
+
|
95 |
+
@property
|
96 |
+
def digits(self):
|
97 |
+
return '0123456789'
|
98 |
+
|
99 |
+
@property
|
100 |
+
def digit_labels(self):
|
101 |
+
return self.get_labels(self.digits, padding=False)
|
102 |
+
|
103 |
+
@property
|
104 |
+
def alphabets(self):
|
105 |
+
all_chars = list(self.char_to_label.keys())
|
106 |
+
valid_chars = []
|
107 |
+
for c in all_chars:
|
108 |
+
if c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ':
|
109 |
+
valid_chars.append(c)
|
110 |
+
return ''.join(valid_chars)
|
111 |
+
|
112 |
+
@property
|
113 |
+
def alphabet_labels(self):
|
114 |
+
return self.get_labels(self.alphabets, padding=False)
|
115 |
+
|
116 |
+
|
117 |
+
class Timer(object):
|
118 |
+
"""A simple timer."""
|
119 |
+
def __init__(self):
|
120 |
+
self.data_time = 0.
|
121 |
+
self.data_diff = 0.
|
122 |
+
self.data_total_time = 0.
|
123 |
+
self.data_call = 0
|
124 |
+
self.running_time = 0.
|
125 |
+
self.running_diff = 0.
|
126 |
+
self.running_total_time = 0.
|
127 |
+
self.running_call = 0
|
128 |
+
|
129 |
+
def tic(self):
|
130 |
+
self.start_time = time.time()
|
131 |
+
self.running_time = self.start_time
|
132 |
+
|
133 |
+
def toc_data(self):
|
134 |
+
self.data_time = time.time()
|
135 |
+
self.data_diff = self.data_time - self.running_time
|
136 |
+
self.data_total_time += self.data_diff
|
137 |
+
self.data_call += 1
|
138 |
+
|
139 |
+
def toc_running(self):
|
140 |
+
self.running_time = time.time()
|
141 |
+
self.running_diff = self.running_time - self.data_time
|
142 |
+
self.running_total_time += self.running_diff
|
143 |
+
self.running_call += 1
|
144 |
+
|
145 |
+
def total_time(self):
|
146 |
+
return self.data_total_time + self.running_total_time
|
147 |
+
|
148 |
+
def average_time(self):
|
149 |
+
return self.average_data_time() + self.average_running_time()
|
150 |
+
|
151 |
+
def average_data_time(self):
|
152 |
+
return self.data_total_time / (self.data_call or 1)
|
153 |
+
|
154 |
+
def average_running_time(self):
|
155 |
+
return self.running_total_time / (self.running_call or 1)
|
156 |
+
|
157 |
+
|
158 |
+
class Logger(object):
|
159 |
+
_handle = None
|
160 |
+
_root = None
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def init(output_dir, name, phase):
|
164 |
+
format = '[%(asctime)s %(filename)s:%(lineno)d %(levelname)s {}] ' \
|
165 |
+
'%(message)s'.format(name)
|
166 |
+
logging.basicConfig(level=logging.INFO, format=format)
|
167 |
+
|
168 |
+
try: os.makedirs(output_dir)
|
169 |
+
except: pass
|
170 |
+
config_path = os.path.join(output_dir, f'{phase}.txt')
|
171 |
+
Logger._handle = logging.FileHandler(config_path)
|
172 |
+
Logger._root = logging.getLogger()
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def enable_file():
|
176 |
+
if Logger._handle is None or Logger._root is None:
|
177 |
+
raise Exception('Invoke Logger.init() first!')
|
178 |
+
Logger._root.addHandler(Logger._handle)
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def disable_file():
|
182 |
+
if Logger._handle is None or Logger._root is None:
|
183 |
+
raise Exception('Invoke Logger.init() first!')
|
184 |
+
Logger._root.removeHandler(Logger._handle)
|
185 |
+
|
186 |
+
|
187 |
+
class Config(object):
|
188 |
+
|
189 |
+
def __init__(self, config_path, host=True):
|
190 |
+
def __dict2attr(d, prefix=''):
|
191 |
+
for k, v in d.items():
|
192 |
+
if isinstance(v, dict):
|
193 |
+
__dict2attr(v, f'{prefix}{k}_')
|
194 |
+
else:
|
195 |
+
if k == 'phase':
|
196 |
+
assert v in ['train', 'test']
|
197 |
+
if k == 'stage':
|
198 |
+
assert v in ['pretrain-vision', 'pretrain-language',
|
199 |
+
'train-semi-super', 'train-super']
|
200 |
+
self.__setattr__(f'{prefix}{k}', v)
|
201 |
+
|
202 |
+
assert os.path.exists(config_path), '%s does not exists!' % config_path
|
203 |
+
with open(config_path) as file:
|
204 |
+
config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
205 |
+
with open('configs/rec/template.yaml') as file:
|
206 |
+
default_config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
207 |
+
__dict2attr(default_config_dict)
|
208 |
+
__dict2attr(config_dict)
|
209 |
+
self.global_workdir = os.path.join(self.global_workdir, self.global_name)
|
210 |
+
|
211 |
+
def __getattr__(self, item):
|
212 |
+
attr = self.__dict__.get(item)
|
213 |
+
if attr is None:
|
214 |
+
attr = dict()
|
215 |
+
prefix = f'{item}_'
|
216 |
+
for k, v in self.__dict__.items():
|
217 |
+
if k.startswith(prefix):
|
218 |
+
n = k.replace(prefix, '')
|
219 |
+
attr[n] = v
|
220 |
+
return attr if len(attr) > 0 else None
|
221 |
+
else:
|
222 |
+
return attr
|
223 |
+
|
224 |
+
def __repr__(self):
|
225 |
+
str = 'ModelConfig(\n'
|
226 |
+
for i, (k, v) in enumerate(sorted(vars(self).items())):
|
227 |
+
str += f'\t({i}): {k} = {v}\n'
|
228 |
+
str += ')'
|
229 |
+
return str
|
230 |
+
|
231 |
+
def blend_mask(image, mask, alpha=0.5, cmap='jet', color='b', color_alpha=1.0):
|
232 |
+
# normalize mask
|
233 |
+
mask = (mask-mask.min()) / (mask.max() - mask.min() + np.finfo(float).eps)
|
234 |
+
if mask.shape != image.shape:
|
235 |
+
mask = cv2.resize(mask,(image.shape[1], image.shape[0]))
|
236 |
+
# get color map
|
237 |
+
color_map = plt.get_cmap(cmap)
|
238 |
+
mask = color_map(mask)[:,:,:3]
|
239 |
+
# convert float to uint8
|
240 |
+
mask = (mask * 255).astype(dtype=np.uint8)
|
241 |
+
|
242 |
+
# set the basic color
|
243 |
+
basic_color = np.array(colors.to_rgb(color)) * 255
|
244 |
+
basic_color = np.tile(basic_color, [image.shape[0], image.shape[1], 1])
|
245 |
+
basic_color = basic_color.astype(dtype=np.uint8)
|
246 |
+
# blend with basic color
|
247 |
+
blended_img = cv2.addWeighted(image, color_alpha, basic_color, 1-color_alpha, 0)
|
248 |
+
# blend with mask
|
249 |
+
blended_img = cv2.addWeighted(blended_img, alpha, mask, 1-alpha, 0)
|
250 |
+
|
251 |
+
return blended_img
|
252 |
+
|
253 |
+
def onehot(label, depth, device=None):
|
254 |
+
"""
|
255 |
+
Args:
|
256 |
+
label: shape (n1, n2, ..., )
|
257 |
+
depth: a scalar
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
onehot: (n1, n2, ..., depth)
|
261 |
+
"""
|
262 |
+
if not isinstance(label, torch.Tensor):
|
263 |
+
label = torch.tensor(label, device=device)
|
264 |
+
onehot = torch.zeros(label.size() + torch.Size([depth]), device=device)
|
265 |
+
onehot = onehot.scatter_(-1, label.unsqueeze(-1), 1)
|
266 |
+
|
267 |
+
return onehot
|
268 |
+
|
269 |
+
class MyDataParallel(nn.DataParallel):
|
270 |
+
|
271 |
+
def gather(self, outputs, target_device):
|
272 |
+
r"""
|
273 |
+
Gathers tensors from different GPUs on a specified device
|
274 |
+
(-1 means the CPU).
|
275 |
+
"""
|
276 |
+
def gather_map(outputs):
|
277 |
+
out = outputs[0]
|
278 |
+
if isinstance(out, (str, int, float)):
|
279 |
+
return out
|
280 |
+
if isinstance(out, list) and isinstance(out[0], str):
|
281 |
+
return [o for out in outputs for o in out]
|
282 |
+
if isinstance(out, torch.Tensor):
|
283 |
+
return torch.nn.parallel._functions.Gather.apply(target_device, self.dim, *outputs)
|
284 |
+
if out is None:
|
285 |
+
return None
|
286 |
+
if isinstance(out, dict):
|
287 |
+
if not all((len(out) == len(d) for d in outputs)):
|
288 |
+
raise ValueError('All dicts must have the same number of keys')
|
289 |
+
return type(out)(((k, gather_map([d[k] for d in outputs]))
|
290 |
+
for k in out))
|
291 |
+
return type(out)(map(gather_map, zip(*outputs)))
|
292 |
+
|
293 |
+
# Recursive function calls like this create reference cycles.
|
294 |
+
# Setting the function to None clears the refcycle.
|
295 |
+
try:
|
296 |
+
res = gather_map(outputs)
|
297 |
+
finally:
|
298 |
+
gather_map = None
|
299 |
+
return res
|
300 |
+
|
301 |
+
|
302 |
+
class MyConcatDataset(ConcatDataset):
|
303 |
+
def __getattr__(self, k):
|
304 |
+
return getattr(self.datasets[0], k)
|