Spaces:
Build error
Build error
import torch | |
from torch import nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from maskrcnn_benchmark import _C | |
# TODO: Use JIT to replace CUDA implementation in the future. | |
class _SigmoidFocalLoss(Function): | |
def forward(ctx, logits, targets, gamma, alpha): | |
ctx.save_for_backward(logits, targets) | |
num_classes = logits.shape[1] | |
ctx.num_classes = num_classes | |
ctx.gamma = gamma | |
ctx.alpha = alpha | |
losses = _C.sigmoid_focalloss_forward( | |
logits, targets, num_classes, gamma, alpha | |
) | |
return losses | |
def backward(ctx, d_loss): | |
logits, targets = ctx.saved_tensors | |
num_classes = ctx.num_classes | |
gamma = ctx.gamma | |
alpha = ctx.alpha | |
d_loss = d_loss.contiguous() | |
d_logits = _C.sigmoid_focalloss_backward( | |
logits, targets, d_loss, num_classes, gamma, alpha | |
) | |
return d_logits, None, None, None, None | |
sigmoid_focal_loss_cuda = _SigmoidFocalLoss.apply | |
def sigmoid_focal_loss_cpu(logits, targets, gamma, alpha): | |
num_classes = logits.shape[1] | |
gamma = gamma[0] | |
alpha = alpha[0] | |
dtype = targets.dtype | |
device = targets.device | |
class_range = torch.arange(1, num_classes+1, dtype=dtype, device=device).unsqueeze(0) | |
t = targets.unsqueeze(1) | |
p = torch.sigmoid(logits) | |
term1 = (1 - p) ** gamma * torch.log(p) | |
term2 = p ** gamma * torch.log(1 - p) | |
return -(t == class_range).float() * term1 * alpha - ((t != class_range) * (t >= 0)).float() * term2 * (1 - alpha) | |
class SigmoidFocalLoss(nn.Module): | |
def __init__(self, gamma, alpha): | |
super(SigmoidFocalLoss, self).__init__() | |
self.gamma = gamma | |
self.alpha = alpha | |
def forward(self, logits, targets): | |
device = logits.device | |
if logits.is_cuda: | |
loss_func = sigmoid_focal_loss_cuda | |
else: | |
loss_func = sigmoid_focal_loss_cpu | |
loss = loss_func(logits, targets, self.gamma, self.alpha) | |
return loss.sum() | |
def __repr__(self): | |
tmpstr = self.__class__.__name__ + "(" | |
tmpstr += "gamma=" + str(self.gamma) | |
tmpstr += ", alpha=" + str(self.alpha) | |
tmpstr += ")" | |
return tmpstr | |