Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
""" | |
helper class that supports empty tensors on some nn functions. | |
Ideally, add support directly in PyTorch to empty tensors in | |
those functions. | |
This can be removed once https://github.com/pytorch/pytorch/issues/12013 | |
is implemented | |
""" | |
import math | |
import torch | |
from torch.nn.modules.utils import _ntuple | |
class _NewEmptyTensorOp(torch.autograd.Function): | |
def forward(ctx, x, new_shape): | |
ctx.shape = x.shape | |
return x.new_empty(new_shape) | |
def backward(ctx, grad): | |
shape = ctx.shape | |
return _NewEmptyTensorOp.apply(grad, shape), None | |
class Conv2d(torch.nn.Conv2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(Conv2d, self).forward(x) | |
# get output shape | |
output_shape = [ | |
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 | |
for i, p, di, k, d in zip( | |
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride | |
) | |
] | |
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
class ConvTranspose2d(torch.nn.ConvTranspose2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(ConvTranspose2d, self).forward(x) | |
# get output shape | |
output_shape = [ | |
(i - 1) * d - 2 * p + (di * (k - 1) + 1) + op | |
for i, p, di, k, d, op in zip( | |
x.shape[-2:], | |
self.padding, | |
self.dilation, | |
self.kernel_size, | |
self.stride, | |
self.output_padding, | |
) | |
] | |
output_shape = [x.shape[0], self.bias.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
class BatchNorm2d(torch.nn.BatchNorm2d): | |
def forward(self, x): | |
if x.numel() > 0: | |
return super(BatchNorm2d, self).forward(x) | |
# get output shape | |
output_shape = x.shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
def interpolate( | |
input, size=None, scale_factor=None, mode="nearest", align_corners=None | |
): | |
if input.numel() > 0: | |
return torch.nn.functional.interpolate( | |
input, size, scale_factor, mode, align_corners | |
) | |
def _check_size_scale_factor(dim): | |
if size is None and scale_factor is None: | |
raise ValueError("either size or scale_factor should be defined") | |
if size is not None and scale_factor is not None: | |
raise ValueError("only one of size or scale_factor should be defined") | |
if ( | |
scale_factor is not None | |
and isinstance(scale_factor, tuple) | |
and len(scale_factor) != dim | |
): | |
raise ValueError( | |
"scale_factor shape must match input shape. " | |
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) | |
) | |
def _output_size(dim): | |
_check_size_scale_factor(dim) | |
if size is not None: | |
return size | |
scale_factors = _ntuple(dim)(scale_factor) | |
# math.floor might return float in py2.7 | |
return [ | |
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim) | |
] | |
output_shape = tuple(_output_size(2)) | |
output_shape = input.shape[:-2] + output_shape | |
return _NewEmptyTensorOp.apply(input, output_shape) | |