Cyril666's picture
First model version
6250360
import torch
from torch import nn
class IOULoss(nn.Module):
def forward(self, pred, target, weight=None):
pred_left = pred[:, 0]
pred_top = pred[:, 1]
pred_right = pred[:, 2]
pred_bottom = pred[:, 3]
target_left = target[:, 0]
target_top = target[:, 1]
target_right = target[:, 2]
target_bottom = target[:, 3]
target_aera = (target_left + target_right) * \
(target_top + target_bottom)
pred_aera = (pred_left + pred_right) * \
(pred_top + pred_bottom)
w_intersect = torch.min(pred_left, target_left) + \
torch.min(pred_right, target_right)
h_intersect = torch.min(pred_bottom, target_bottom) + \
torch.min(pred_top, target_top)
area_intersect = w_intersect * h_intersect
area_union = target_aera + pred_aera - area_intersect
losses = -torch.log((area_intersect + 1.0) / (area_union + 1.0))
if weight is not None and weight.sum() > 0:
return (losses * weight).sum() / weight.sum()
else:
assert losses.numel() != 0
return losses.mean()