import asyncio import gradio as gr from autogen.runtime_logging import start, stop from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.base import TaskResult # Configuration LOG_FILE = "team_runtime.log" def create_llm_config(api_key): return { "model": "gpt-4o", "api_key": api_key, "cache_seed": None } # Create the team with primary and critic agents def create_team(llm_config, primary_system_message, critic_system_message): model_client = OpenAIChatCompletionClient(**llm_config) primary_agent = AssistantAgent( "primary", model_client=model_client, system_message=primary_system_message, ) critic_agent = AssistantAgent( "critic", model_client=model_client, system_message=critic_system_message ) # Set termination conditions (10-message cap OR "APPROVE" detected) max_message_termination = MaxMessageTermination(max_messages=10) text_termination = TextMentionTermination("APPROVE") combined_termination = max_message_termination | text_termination team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination) return team, model_client # Function to stream the task through the workflow async def async_stream_task(task_message, api_key, primary_system_message, critic_system_message): # Start logging logging_session_id = start(logger_type="file", config={"filename": LOG_FILE}) print(f"Logging session ID: {logging_session_id}") llm_config = create_llm_config(api_key) team, model_client = create_team(llm_config, primary_system_message, critic_system_message) documentation_triggered = False # Track if documentation agent was triggered final_output = None # Store the final approved output try: async for message in team.run_stream(task=task_message): if hasattr(message, "source") and hasattr(message, "content"): # Handle critic's approval if message.source == "critic" and "APPROVE" in message.content: print("Critic approved the response. Handing off to Documentation Agent...") documentation_triggered = True final_output = task_message # Capture the final approved output break yield message.source, message.content # Trigger Documentation Agent if approved if documentation_triggered and final_output: documentation_agent = AssistantAgent( "documentation", model_client=model_client, system_message=documentation_system_message, ) doc_task = f"Generate a '--help' message for the following code:\n\n{final_output}" async for doc_message in documentation_agent.run_stream(task=doc_task): if isinstance(doc_message, TaskResult): # Extract messages from TaskResult for msg in doc_message.messages: yield msg.source, msg.content else: yield doc_message.source, doc_message.content finally: # Stop logging stop() # Gradio interface function async def chat_interface(api_key, primary_system_message, critic_system_message, task_message): primary_messages = [] critic_messages = [] documentation_messages = [] # Append new messages while streaming async for source, output in async_stream_task(task_message, api_key, primary_system_message, critic_system_message): if source == "primary": primary_messages.append(output) elif source == "critic": critic_messages.append(output) elif source == "documentation": documentation_messages.append(output) # Return all outputs yield ( "\n".join(primary_messages), "\n".join(critic_messages), "\n".join(documentation_messages), ) # Gradio interface iface = gr.Interface( fn=chat_interface, inputs=[ gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key"), gr.Textbox(label="Primary Agent System Message", placeholder="Enter the system message for the primary agent", value="You are a creative assistant focused on producing high-quality code."), gr.Textbox(label="Critic Agent System Message", placeholder="Enter the system message for the critic agent (requires APPROVAL tag!)", value="Critic. You are a helpful assistant highly skilled in evaluating the quality of a given code or response. Provide constructive feedback and respond with 'APPROVE' once the feedback is addressed."), gr.Textbox(label="Documentation Agent System Message", placeholder="Enter the system message for the documentation agent", value="You are a documentation assistant. Write a short and concise '--help' message for the provided code."), gr.Textbox(label="Task Message", placeholder="Enter your task message"), ], outputs=[ gr.Textbox(label="Primary Assistant Messages"), gr.Textbox(label="Critic Messages"), gr.Textbox(label="Documentation Messages"), ], title="Team Workflow with Documentation Agent and Hard Cap", description="Collaborative workflow between Primary, Critic, and Documentation agents with a hard cap on messages." ) # Launch the app if __name__ == "__main__": iface.launch(share=True)