CultriX's picture
Update app.py
c3cdef4 verified
raw
history blame
5.56 kB
import asyncio
import gradio as gr
from autogen.runtime_logging import start, stop
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.base import TaskResult
# Configuration
LOG_FILE = "team_runtime.log"
def create_llm_config(api_key):
return {
"model": "gpt-4o",
"api_key": api_key,
"cache_seed": None
}
# Create the team with primary and critic agents
def create_team(llm_config, primary_system_message, critic_system_message):
model_client = OpenAIChatCompletionClient(**llm_config)
primary_agent = AssistantAgent(
"primary",
model_client=model_client,
system_message=primary_system_message,
)
critic_agent = AssistantAgent(
"critic",
model_client=model_client,
system_message=critic_system_message
)
# Set termination conditions (10-message cap OR "APPROVE" detected)
max_message_termination = MaxMessageTermination(max_messages=10)
text_termination = TextMentionTermination("APPROVE")
combined_termination = max_message_termination | text_termination
team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination)
return team, model_client
# Function to stream the task through the workflow
async def async_stream_task(task_message, api_key, primary_system_message, critic_system_message):
# Start logging
logging_session_id = start(logger_type="file", config={"filename": LOG_FILE})
print(f"Logging session ID: {logging_session_id}")
llm_config = create_llm_config(api_key)
team, model_client = create_team(llm_config, primary_system_message, critic_system_message)
documentation_triggered = False # Track if documentation agent was triggered
final_output = None # Store the final approved output
try:
async for message in team.run_stream(task=task_message):
if hasattr(message, "source") and hasattr(message, "content"):
# Handle critic's approval
if message.source == "critic" and "APPROVE" in message.content:
print("Critic approved the response. Handing off to Documentation Agent...")
documentation_triggered = True
final_output = task_message # Capture the final approved output
break
yield message.source, message.content
# Trigger Documentation Agent if approved
if documentation_triggered and final_output:
documentation_agent = AssistantAgent(
"documentation",
model_client=model_client,
system_message="You are a documentation assistant. Write a short and concise '--help' message for the provided code.",
)
doc_task = f"Generate a '--help' message for the following code:\n\n{final_output}"
async for doc_message in documentation_agent.run_stream(task=doc_task):
if isinstance(doc_message, TaskResult):
# Extract messages from TaskResult
for msg in doc_message.messages:
yield msg.source, msg.content
else:
yield doc_message.source, doc_message.content
finally:
# Stop logging
stop()
# Gradio interface function
async def chat_interface(api_key, primary_system_message, critic_system_message, task_message):
primary_messages = []
critic_messages = []
documentation_messages = []
# Append new messages while streaming
async for source, output in async_stream_task(task_message, api_key, primary_system_message, critic_system_message):
if source == "primary":
primary_messages.append(output)
elif source == "critic":
critic_messages.append(output)
elif source == "documentation":
documentation_messages.append(output)
# Return all outputs
yield (
"\n".join(primary_messages),
"\n".join(critic_messages),
"\n".join(documentation_messages),
)
# Gradio interface
iface = gr.Interface(
fn=chat_interface,
inputs=[
gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key"),
gr.Textbox(label="Primary Agent System Message", placeholder="Enter the system message for the primary agent", value="You are a creative assistant focused on producing high-quality code."),
gr.Textbox(label="Critic Agent System Message", placeholder="Enter the system message for the critic agent", value="Critic. You are a helpful assistant highly skilled in evaluating the quality of a given code or response. Provide constructive feedback and respond with 'APPROVE' once the feedback is addressed."),
gr.Textbox(label="Task Message", placeholder="Enter your task message"),
],
outputs=[
gr.Textbox(label="Primary Assistant Messages"),
gr.Textbox(label="Critic Messages"),
gr.Textbox(label="Documentation Messages"),
],
title="Team Workflow with Documentation Agent and Hard Cap",
description="Collaborative workflow between Primary, Critic, and Documentation agents with a hard cap on messages."
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)