Spaces:
Runtime error
Runtime error
from diffusers import LDMPipeline | |
import torch | |
import PIL.Image | |
import gradio as gr | |
import random | |
import numpy as np | |
pipeline = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") | |
def predict(steps, seed): | |
generator = torch.manual_seed(seed) | |
for i in range(1,steps): | |
yield pipeline(generator=generator, num_inference_steps=i)["sample"][0] | |
random_seed = random.randint(0, 2147483647) | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1), | |
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1), | |
], | |
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"), | |
css="#output_image{width: 256px}", | |
title="ldm-celebahq-256 - 🧨 diffusers library", | |
description="This Spaces contains an unconditional Latent Diffusion process for the <a href=\"https://huggingface.co./CompVis/ldm-celebahq-256\">ldm-celebahq-256</a> face generator model by <a href=\"https://huggingface.co./CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library capabilities. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co./spaces/multimodalart/latentdiffusion\">main Spaces</a>.", | |
).queue().launch() |