agent-reference-implemenation / model /conversation_chain_singleton.py
Chris4K's picture
msg
c7588c6
raw
history blame
2.34 kB
"""
Module: conversation_chain_singleton
This module provides a singleton class, ConversationChainSingleton, for managing a conversation chain instance.
Dependencies:
- langchain.memory: Module providing memory functionalities for conversation chains.
- langchain.chains: Module providing conversation chain functionalities.
- langchain.llms: Module providing language model functionalities, particularly from HuggingFaceHub.
Classes:
- ConversationChainSingleton: A singleton class for managing a conversation chain instance.
"""
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.llms import HuggingFaceHub
class ConversationChainSingleton:
def __init__(self) -> None:
pass
def conversation_chain(self, text):
"""
Create a conversational retrieval chain and a language model.
Returns:
- ConversationChain: The initialized conversation chain.
"""
print(text)
llm = HuggingFaceHub(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"max_length": 1048, "temperature": 0.2, "max_new_tokens": 256, "top_p": 0.95, "repetition_penalty": 1.0},
)
memory = ConversationBufferMemory(memory_key="history", return_messages=True)
conversation_chain = ConversationChain(
llm=llm, verbose=True, memory=memory
)
return conversation_chain
"""
A singleton class for managing a conversation chain instance.
Attributes:
- _instance: Private attribute holding the singleton instance.
- conversation_chain: The conversation chain instance.
Methods:
- __new__(cls, *args, **kwargs): Creates a new instance of the ConversationChainSingleton class.
- get_conversation_chain(self): Returns the conversation chain instance.
- get_conversation_chain(): Creates and returns a conversational retrieval chain and a language model.
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(ConversationChainSingleton, cls).__new__(cls)
# Initialize your conversation chain here
cls._instance.conversation_chain = cls.get_conversation_chain(cls._instance)
return cls._instance
"""