Create services/data_service.py
Browse files- services/data_service.py +104 -0
services/data_service.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# services/data_service.py
|
2 |
+
from typing import List, Dict, Any, Optional
|
3 |
+
import pandas as pd
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import aiohttp
|
7 |
+
from datetime import datetime
|
8 |
+
import logging
|
9 |
+
from config.config import settings
|
10 |
+
from functools import lru_cache
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
class DataService:
|
15 |
+
def __init__(self, model_service):
|
16 |
+
self.embedder = model_service.embedder
|
17 |
+
self.cache = {}
|
18 |
+
self.last_update = None
|
19 |
+
self.faiss_index = None
|
20 |
+
self.data_cleaned = None
|
21 |
+
|
22 |
+
async def fetch_csv_data(self) -> pd.DataFrame:
|
23 |
+
async with aiohttp.ClientSession() as session:
|
24 |
+
for attempt in range(settings.MAX_RETRIES):
|
25 |
+
try:
|
26 |
+
async with session.get(settings.CSV_URL) as response:
|
27 |
+
if response.status == 200:
|
28 |
+
content = await response.text()
|
29 |
+
return pd.read_csv(pd.StringIO(content), sep='|')
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Attempt {attempt + 1} failed: {e}")
|
32 |
+
if attempt == settings.MAX_RETRIES - 1:
|
33 |
+
raise
|
34 |
+
|
35 |
+
async def prepare_data_and_index(self) -> tuple:
|
36 |
+
current_time = datetime.now()
|
37 |
+
|
38 |
+
# Check cache validity
|
39 |
+
if (self.last_update and
|
40 |
+
(current_time - self.last_update).seconds < settings.CACHE_DURATION and
|
41 |
+
self.cache):
|
42 |
+
return self.cache['data'], self.cache['index']
|
43 |
+
|
44 |
+
data = await self.fetch_csv_data()
|
45 |
+
|
46 |
+
# Data cleaning and preparation
|
47 |
+
columns_to_keep = [
|
48 |
+
'ID', 'Name', 'Description', 'Price',
|
49 |
+
'ProductCategory', 'Grammage',
|
50 |
+
'BasePriceText', 'Rating', 'RatingCount',
|
51 |
+
'Ingredients', 'CreationDate', 'Keywords', 'Brand'
|
52 |
+
]
|
53 |
+
|
54 |
+
self.data_cleaned = data[columns_to_keep].copy()
|
55 |
+
self.data_cleaned['Description'] = self.data_cleaned['Description'].str.replace(
|
56 |
+
r'[^\w\s.,;:\'/?!€$%&()\[\]{}<>|=+\\-]', ' ', regex=True
|
57 |
+
)
|
58 |
+
|
59 |
+
# Improved text combination with weights
|
60 |
+
self.data_cleaned['combined_text'] = self.data_cleaned.apply(
|
61 |
+
lambda row: (
|
62 |
+
f"{row['Name']} {row['Name']} " # Double weight for name
|
63 |
+
f"{row['Description']} "
|
64 |
+
f"{row['Keywords'] if pd.notnull(row['Keywords']) else ''} "
|
65 |
+
f"{row['ProductCategory'] if pd.notnull(row['ProductCategory']) else ''}"
|
66 |
+
).strip(),
|
67 |
+
axis=1
|
68 |
+
)
|
69 |
+
|
70 |
+
# Create FAISS index
|
71 |
+
embeddings = self.embedder.encode(
|
72 |
+
self.data_cleaned['combined_text'].tolist(),
|
73 |
+
convert_to_tensor=True,
|
74 |
+
show_progress_bar=True
|
75 |
+
).cpu().detach().numpy()
|
76 |
+
|
77 |
+
d = embeddings.shape[1]
|
78 |
+
self.faiss_index = faiss.IndexFlatL2(d)
|
79 |
+
self.faiss_index.add(embeddings)
|
80 |
+
|
81 |
+
# Update cache
|
82 |
+
self.cache = {
|
83 |
+
'data': self.data_cleaned,
|
84 |
+
'index': self.faiss_index
|
85 |
+
}
|
86 |
+
self.last_update = current_time
|
87 |
+
|
88 |
+
return self.data_cleaned, self.faiss_index
|
89 |
+
|
90 |
+
async def search(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
91 |
+
if not self.faiss_index:
|
92 |
+
await self.prepare_data_and_index()
|
93 |
+
|
94 |
+
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
|
95 |
+
distances, indices = self.faiss_index.search(query_embedding, top_k)
|
96 |
+
|
97 |
+
results = []
|
98 |
+
for i, idx in enumerate(indices[0]):
|
99 |
+
product = self.data_cleaned.iloc[idx].to_dict()
|
100 |
+
product['score'] = float(distances[0][i])
|
101 |
+
results.append(product)
|
102 |
+
|
103 |
+
return results
|
104 |
+
|