VoiceBot / services /pdf_service.py
Chris4K's picture
Create pdf_service.py
68a1536 verified
raw
history blame
3.05 kB
# services/pdf_service.py
from pathlib import Path
from typing import List, Dict, Any
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import asyncio
from concurrent.futures import ThreadPoolExecutor
import logging
from config.config import settings
logger = logging.getLogger(__name__)
class PDFService:
def __init__(self, model_service):
self.embedder = model_service.embedder
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=settings.CHUNK_SIZE,
chunk_overlap=settings.CHUNK_OVERLAP
)
self.pdf_chunks = []
self.faiss_index = None
async def index_pdfs(self, pdf_folder: Path = settings.PDF_FOLDER) -> List[Dict[str, Any]]:
all_texts = []
async def process_pdf(pdf_file: Path) -> List[Dict[str, Any]]:
try:
reader = PdfReader(str(pdf_file))
metadata = reader.metadata
full_text = " ".join([
page.extract_text()
for page in reader.pages
if page.extract_text()
])
chunks = self.text_splitter.split_text(full_text)
return [{
'text': chunk,
'source': pdf_file.name,
'metadata': metadata,
'chunk_index': i
} for i, chunk in enumerate(chunks)]
except Exception as e:
logger.error(f"Error processing PDF {pdf_file}: {e}")
return []
pdf_files = [f for f in pdf_folder.iterdir() if f.suffix.lower() == ".pdf"]
async with ThreadPoolExecutor() as executor:
tasks = [process_pdf(pdf_file) for pdf_file in pdf_files]
results = await asyncio.gather(*tasks)
for result in results:
all_texts.extend(result)
self.pdf_chunks = all_texts
return all_texts
async def search_pdfs(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
if not self.pdf_chunks:
await self.index_pdfs()
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
# Create embeddings for chunks if not already done
if not self.faiss_index:
chunk_embeddings = self.embedder.encode(
[chunk['text'] for chunk in self.pdf_chunks],
convert_to_tensor=True
).cpu().detach().numpy()
d = chunk_embeddings.shape[1]
self.faiss_index = faiss.IndexFlatL2(d)
self.faiss_index.add(chunk_embeddings)
distances, indices = self.faiss_index.search(query_embedding, top_k)
results = []
for i, idx in enumerate(indices[0]):
chunk = self.pdf_chunks[idx].copy()
chunk['score'] = float(distances[0][i])
results.append(chunk)
return results