VoiceBot / app.py
Chris4K's picture
Update app.py
2b8f6ae verified
raw
history blame
6.58 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
# Load Llama 3.2 model
model_name = "meta-llama/Llama-3.2-3B-Instruct" # Replace with the exact model path
tokenizer = AutoTokenizer.from_pretrained(model_name)
#model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map=None, torch_dtype=torch.float32)
# Helper function to process long contexts
MAX_TOKENS = 100000 # Replace with the max token limit of the Llama model
#########
###
#########
import faiss
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# Load Llama model
#model_name = "meta-llama/Llama-3.2-3B-Instruct" # Replace with the exact model path
#tokenizer = AutoTokenizer.from_pretrained(model_name)
#model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
# Load Sentence Transformer model for embeddings
embedder = SentenceTransformer('distiluse-base-multilingual-cased') # Suitable for German text
########
###
###
#####
# Load the CSV data
url = 'https://www.bofrost.de/datafeed/DE/products.csv'
data = pd.read_csv(url, sep='|')
# List of columns to keep
columns_to_keep = [
'ID', 'Name', 'Description', 'Price',
'ProductCategory', 'Grammage',
'BasePriceText', 'Rating', 'RatingCount',
'Ingredients', 'CreationDate', 'Keywords', 'Brand'
]
# Filter the DataFrame
data_cleaned = data[columns_to_keep]
# Remove unwanted characters from the 'Description' column
data_cleaned['Description'] = data_cleaned['Description'].str.replace(r'[^\w\s.,;:\'"/?!€$%&()\[\]{}<>|=+\\-]', ' ', regex=True)
# Combine relevant text columns for embedding
data_cleaned['combined_text'] = data_cleaned.apply(lambda row: ' '.join([str(row[col]) for col in ['Name', 'Description', 'Keywords'] if pd.notnull(row[col])]), axis=1)
######
##
#####
# Generate embeddings for the combined text
embeddings = embedder.encode(data_cleaned['combined_text'].tolist(), convert_to_tensor=True)
# Convert embeddings to numpy array
embeddings = embeddings.cpu().detach().numpy()
# Initialize FAISS index
d = embeddings.shape[1] # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)
# Add embeddings to the index
faiss_index.add(embeddings)
#######
##
######
def search_products(query, top_k=7):
# Generate embedding for the query
query_embedding = embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
# Search FAISS index
distances, indices = faiss_index.search(query_embedding, top_k)
# Retrieve corresponding products
results = data_cleaned.iloc[indices[0]].to_dict(orient='records')
return results
# Update the prompt construction to include ChromaDB results
def construct_system_prompt( context):
prompt = f"You are a friendly bot specializing in Bofrost products. Return comprehensive german answers. Always add product ids. Use the following product descriptions:\n\n{context}\n\n"
return prompt
# Helper function to construct the prompt
def construct_prompt(user_input, context, chat_history, max_history_turns=1): # Added max_history_turns
system_message = construct_system_prompt(context)
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
# Limit history to the last max_history_turns
for i, (user_msg, assistant_msg) in enumerate(chat_history[-max_history_turns:]):
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
print("-------------------------")
print(prompt)
return prompt
def chat_with_model(user_input, chat_history=[]):
# Search for relevant products
search_results = search_products(user_input)
# Create context with search results
if search_results:
context = "Product Context:\n"
for product in search_results:
context += f"Produkt ID: {product['ID']}\n"
context += f"Name: {product['Name']}\n"
context += f"Beschreibung: {product['Description']}\n"
context += f"Preis: {product['Price']}€\n"
context += f"Bewertung: {product['Rating']} ({product['RatingCount']} Bewertungen)\n"
context += f"Kategorie: {product['ProductCategory']}\n"
context += f"Marke: {product['Brand']}\n"
context += "---\n"
else:
context = "Das weiß ich nicht."
print("context: ------------------------------------- \n"+context)
# Pass both user_input and context to construct_prompt
prompt = construct_prompt(user_input, context, chat_history) # This line is changed
print("prompt: ------------------------------------- \n"+prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096).to("cpu")
tokenizer.pad_token = tokenizer.eos_token
attention_mask = torch.ones_like(input_ids).to("cpu")
outputs = model.generate(input_ids, attention_mask=attention_mask,
max_new_tokens=1200, do_sample=True,
top_k=50, temperature=0.7)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print("respone: ------------------------------------- \n"+response)
chat_history.append((context, response)) # or chat_history.append((user_input, response)) if you want to store user input
return response, chat_history
#####
###
###
# Gradio Interface
def gradio_interface(user_input, history):
response, updated_history = chat_with_model(user_input, history)
return response, updated_history
with gr.Blocks() as demo:
gr.Markdown("# 🦙 Llama Instruct Chat with ChromaDB Integration")
with gr.Row():
user_input = gr.Textbox(label="Your Message", lines=2, placeholder="Type your message here...")
submit_btn = gr.Button("Send")
chat_history = gr.State([])
chat_display = gr.Textbox(label="Chat Response", lines=10, placeholder="Chat history will appear here...", interactive=False)
submit_btn.click(gradio_interface, inputs=[user_input, chat_history], outputs=[chat_display, chat_history])
demo.launch(debug=True)