import gradio as gr from huggingface_hub import InferenceClient import time from typing import Optional, Generator import logging import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) STORY_THEMES = [ "Adventure", "Mystery", "Romance", "Historical", "Slice of Life", "Fairy Tale" ] CHARACTER_TEMPLATES = { "Adventurer": "A brave and fearless explorer who loves adventure and challenges.", "Detective": "A keen and observant detective skilled in observation and deduction.", "Artist": "A creative artist with unique perspectives on beauty.", "Scientist": "A curious scientist dedicated to exploring the unknown.", "Ordinary Person": "An ordinary person with a rich inner world." } # Initialize story generator system prompt STORY_SYSTEM_PROMPT = """You are a professional story generator. Your task is to generate coherent and engaging stories based on user settings and real-time input. Key requirements: 1. The story must maintain continuity, with each response building upon all previous plot developments 2. Carefully analyze dialogue history to maintain consistency in character personalities and plot progression 3. Naturally integrate new details or development directions when provided by the user 4. Pay attention to cause and effect, ensuring each plot point has reasonable setup and explanation 5. Make the story more vivid through environmental descriptions and character dialogues 6. At key story points, provide hints to guide user participation in plot progression You should not: 1. Start a new story 2. Ignore previously mentioned important plots or details 3. Generate content that contradicts established settings 4. Introduce major turns without proper setup Remember: You are creating an ongoing story, not independent fragments.""" STORY_STYLES = [ "Fantasy", "Science Fiction", "Mystery", "Adventure", "Romance", "Horror" ] MAX_RETRIES = 3 RETRY_DELAY = 2 def create_client() -> InferenceClient: hf_token = os.getenv('HF_TOKEN') if not hf_token: raise ValueError("HF_TOKEN environment variable not set") return InferenceClient( "HuggingFaceH4/zephyr-7b-beta", token=hf_token ) def generate_story( scene: str, style: str, theme: str, character_desc: str, history: list = None, temperature: float = 0.7, max_tokens: int = 512, top_p: float = 0.95, ) -> Generator[str, None, None]: """ Generate continuous story plot """ if history is None: history = [] # Build context summary context_summary = "" story_content = [] # Extract previous story content for msg in history: if msg["role"] == "assistant": story_content.append(msg["content"]) if story_content: context_summary = "\n".join([ "Previously in the story:", "---", "\n".join(story_content), "---" ]) # Use different prompt templates based on whether there's history if not history: # First generation, use complete settings prompt = f""" Please start a story based on the following settings: Style: {style} Theme: {theme} Character: {character_desc} Initial Scene: {scene} Please begin from this scene and set up the story's opening. Leave room for future developments. """ else: # Subsequent generation, focus on plot continuation prompt = f""" {context_summary} Story settings reminder: - Style: {style} - Theme: {theme} - Main Character: {character_desc} User's new input: {scene} Please continue the story based on the previous plot and user's new input. Note: 1. New developments must maintain continuity with previous plot 2. Rationalize new elements provided by the user 3. Maintain consistency in character personalities 4. Leave possibilities for future developments Continue the story: """ messages = [ {"role": "system", "content": STORY_SYSTEM_PROMPT}, {"role": "user", "content": prompt} ] try: client = create_client() response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if hasattr(message.choices[0].delta, 'content'): token = message.choices[0].delta.content if token is not None: response += token yield response except Exception as e: logger.error(f"Error occurred while generating story: {str(e)}") yield f"Sorry, encountered an error while generating the story: {str(e)}\nPlease try again later." def summarize_story_context(history: list) -> str: """ Summarize current story context for generation assistance """ if not history: return "" summary_parts = [] key_elements = { "characters": set(), # Characters appeared "locations": set(), # Scene locations "events": [], # Key events "objects": set() # Important items } for msg in history: content = msg.get("content", "") # TODO: More complex NLP processing can be added here to extract key information # Currently using simple text accumulation if content: summary_parts.append(content) return "\n".join(summary_parts) # Create story generator interface def create_demo(): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🎭 Interactive Story Generator Let AI create a unique storytelling experience for you. Choose your story style, theme, add character settings, then describe a scene to start your story. Interact with AI to continue developing the plot! """ ) with gr.Tabs(): # Story Creation Tab with gr.Tab("✍️ Story Creation"): with gr.Row(equal_height=True): # Left Control Panel with gr.Column(scale=1): with gr.Group(): style_select = gr.Dropdown( choices=STORY_STYLES, value="Fantasy", label="Choose Story Style", info="Select an overall style to define the story's tone" ) theme_select = gr.Dropdown( choices=STORY_THEMES, value="Adventure", label="Choose Story Theme", info="Select the main thematic elements to focus on" ) with gr.Group(): gr.Markdown("### 👤 Character Settings") character_select = gr.Dropdown( choices=list(CHARACTER_TEMPLATES.keys()), value="Adventurer", label="Select Character Template", info="Choose a preset character type or customize description" ) character_desc = gr.Textbox( lines=3, value=CHARACTER_TEMPLATES["Adventurer"], label="Character Description", info="Describe character's personality, background, traits, etc." ) with gr.Group(): scene_input = gr.Textbox( lines=3, placeholder="Describe the scene, environment, time, etc. here...", label="Scene Description", info="Detailed scene description will make the story more vivid" ) with gr.Row(): submit_btn = gr.Button("✨ Start Story", variant="primary", scale=2) clear_btn = gr.Button("🗑️ Clear Chat", scale=1) save_btn = gr.Button("💾 Save Story", scale=1) # Right Chat Area with gr.Column(scale=2): chatbot = gr.Chatbot( label="Story Dialogue", height=600, show_label=True ) status_msg = gr.Markdown("") # Settings Tab with gr.Tab("⚙️ Advanced Settings"): with gr.Group(): with gr.Row(): with gr.Column(): temperature = gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Creativity (Temperature)", info="Higher values make story more creative but potentially less coherent" ) max_tokens = gr.Slider( minimum=64, maximum=1024, value=512, step=64, label="Maximum Generation Length", info="Control the length of each generated text" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Sampling Range (Top-p)", info="Control the diversity of word choice" ) # Help Information with gr.Accordion("📖 Usage Guide", open=False): gr.Markdown( """ ## How to Use the Story Generator 1. Choose story style and theme to set the overall tone 2. Select a preset character template or customize character description 3. Describe the story's scene and environment 4. Click "Start Story" to generate the opening 5. Continue inputting content to interact with AI and advance the story ## Tips - Detailed scene and character descriptions will make the generated story richer - Use the "Save Story" function to save memorable story plots - Adjust parameters in settings to affect story creativity and coherence - Use "Clear Chat" to start over if you're not satisfied with the plot ## Parameter Explanation - Creativity: Controls the story's creativity level, higher values increase creativity - Sampling Range: Controls vocabulary richness, higher values increase word diversity - Maximum Length: Controls the length of each generated text """ ) # Update character description def update_character_desc(template): return CHARACTER_TEMPLATES[template] character_select.change( update_character_desc, character_select, character_desc ) # Save story dialogue save_btn.click( save_story, inputs=[ chatbot, style_select, theme_select, character_desc ], outputs=status_msg ) # User input processing def user_input(user_message, history): """ Process user input Args: user_message: User's input message history: Chat history [(user_msg, bot_msg), ...] """ if history is None: history = [] history.append([user_message, None]) # Add user message, bot message temporarily None return "", history # AI response processing def bot_response(history, style, theme, character_desc, temperature, max_tokens, top_p): """ Generate AI response Args: history: Chat history [(user_msg, bot_msg), ...] style: Story style theme: Story theme character_desc: Character description temperature: Generation parameter max_tokens: Generation parameter top_p: Generation parameter """ try: # Get user's last message user_message = history[-1][0] # Convert history format for generate_story message_history = [] for user_msg, bot_msg in history[:-1]: # Excluding the last one if user_msg: message_history.append({"role": "user", "content": user_msg}) if bot_msg: message_history.append({"role": "assistant", "content": bot_msg}) # Start generating story current_response = "" for text in generate_story( user_message, style, theme, character_desc, message_history, temperature, max_tokens, top_p ): current_response = text history[-1][1] = current_response # Update bot reply for the last message yield history except Exception as e: logger.error(f"Error occurred while processing response: {str(e)}") error_msg = f"Sorry, encountered an error while generating the story. Please try again later." history[-1][1] = error_msg yield history # Clear chat def clear_chat(): return [], "" # Bind events scene_input.submit( user_input, [scene_input, chatbot], [scene_input, chatbot] ).then( bot_response, [chatbot, style_select, theme_select, character_desc, temperature, max_tokens, top_p], chatbot ) submit_btn.click( user_input, [scene_input, chatbot], [scene_input, chatbot] ).then( bot_response, [chatbot, style_select, theme_select, character_desc, temperature, max_tokens, top_p], chatbot ) clear_btn.click( clear_chat, None, [chatbot, status_msg], ) return demo def save_story(chatbot, style=None, theme=None, character_desc=None): """ Save story dialogue record with metadata Args: chatbot: Chat history containing user and AI messages style: Story style selected by user theme: Story theme selected by user character_desc: Character description Returns: Status message indicating success or failure """ if not chatbot: return "Story is empty, cannot save" timestamp = time.strftime("%Y%m%d_%H%M%S") # Create stories directory if it doesn't exist # Use absolute path for Hugging Face Space stories_dir = os.path.join(os.getcwd(), "stories") os.makedirs(stories_dir, exist_ok=True) filename = os.path.join(stories_dir, f"story_{timestamp}.txt") try: with open(filename, "w", encoding="utf-8") as f: # Write header with metadata f.write("=== Interactive Story ===\n") f.write(f"Created: {time.strftime('%Y-%m-%d %H:%M:%S')}\n") if style: f.write(f"Style: {style}\n") if theme: f.write(f"Theme: {theme}\n") if character_desc: f.write(f"Character: {character_desc}\n") f.write("\n=== Story Content ===\n\n") # Write conversation for i, (user_msg, ai_msg) in enumerate(chatbot, 1): f.write(f"--- Turn {i} ---\n") if user_msg: f.write(f"User: {user_msg}\n") if ai_msg: f.write(f"AI: {ai_msg}\n") f.write("\n") # Return success message with filename return gr.Markdown(f"✅ Story saved successfully to: {os.path.basename(filename)}") except Exception as e: logger.error(f"Error saving story: {str(e)}") return gr.Markdown(f"❌ Failed to save story: {str(e)}") if __name__ == "__main__": demo = create_demo() demo.queue().launch( # server_name="0.0.0.0", server_port=7860, share=False )