Spaces:
Running
on
A10G
Running
on
A10G
import os, csv, random | |
import numpy as np | |
from decord import VideoReader | |
import torch | |
import torchvision.transforms as transforms | |
from torch.utils.data.dataset import Dataset | |
class ChronoMagic(Dataset): | |
def __init__( | |
self, | |
csv_path, video_folder, | |
sample_size=512, sample_stride=4, sample_n_frames=16, | |
is_image=False, | |
is_uniform=True, | |
): | |
with open(csv_path, 'r') as csvfile: | |
self.dataset = list(csv.DictReader(csvfile)) | |
self.length = len(self.dataset) | |
self.video_folder = video_folder | |
self.sample_stride = sample_stride | |
self.sample_n_frames = sample_n_frames | |
self.is_image = is_image | |
self.is_uniform = is_uniform | |
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size) | |
self.pixel_transforms = transforms.Compose([ | |
transforms.RandomHorizontalFlip(), | |
transforms.Resize(sample_size[0], interpolation=transforms.InterpolationMode.BICUBIC), | |
transforms.CenterCrop(sample_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
def _get_frame_indices_adjusted(self, video_length, n_frames): | |
indices = list(range(video_length)) | |
additional_frames_needed = n_frames - video_length | |
repeat_indices = [] | |
for i in range(additional_frames_needed): | |
index_to_repeat = i % video_length | |
repeat_indices.append(indices[index_to_repeat]) | |
all_indices = indices + repeat_indices | |
all_indices.sort() | |
return all_indices | |
def _generate_frame_indices(self, video_length, n_frames, sample_stride, is_transmit): | |
prob_execute_original = 1 if int(is_transmit) == 0 else 0 | |
# Generate a random number to decide which block of code to execute | |
if random.random() < prob_execute_original: | |
if video_length <= n_frames: | |
return self._get_frame_indices_adjusted(video_length, n_frames) | |
else: | |
interval = (video_length - 1) / (n_frames - 1) | |
indices = [int(round(i * interval)) for i in range(n_frames)] | |
indices[-1] = video_length - 1 | |
return indices | |
else: | |
if video_length <= n_frames: | |
return self._get_frame_indices_adjusted(video_length, n_frames) | |
else: | |
clip_length = min(video_length, (n_frames - 1) * sample_stride + 1) | |
start_idx = random.randint(0, video_length - clip_length) | |
return np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist() | |
def get_batch(self, idx): | |
video_dict = self.dataset[idx] | |
videoid, name, is_transmit = video_dict['videoid'], video_dict['name'], video_dict['is_transmit'] | |
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4") | |
video_reader = VideoReader(video_dir, num_threads=0) | |
video_length = len(video_reader) | |
batch_index = self._generate_frame_indices(video_length, self.sample_n_frames, self.sample_stride, is_transmit) if not self.is_image else [random.randint(0, video_length - 1)] | |
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2) / 255. | |
del video_reader | |
if self.is_image: | |
pixel_values = pixel_values[0] | |
return pixel_values, name, videoid | |
def __len__(self): | |
return self.length | |
def __getitem__(self, idx): | |
while True: | |
try: | |
pixel_values, name, videoid = self.get_batch(idx) | |
break | |
except Exception as e: | |
idx = random.randint(0, self.length-1) | |
pixel_values = self.pixel_transforms(pixel_values) | |
sample = dict(pixel_values=pixel_values, text=name, id=videoid) | |
return sample |